THE S2-ENSEMBLE FUSION ALGORITHM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F11%3A86084426" target="_blank" >RIV/61989100:27740/11:86084426 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1142/S0129065711003012" target="_blank" >http://dx.doi.org/10.1142/S0129065711003012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129065711003012" target="_blank" >10.1142/S0129065711003012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
THE S2-ENSEMBLE FUSION ALGORITHM
Popis výsledku v původním jazyce
This paper presents a novel model for performing classification and visualization of high-dimensional data by means of combining two enhancing techniques. The first is a semi-supervised learning, an extension of the supervised learning used to incorporate unlabeled information to the learning process. The second is an ensemble learning to replicate the analysis performed, followed by a fusion mechanism that yields as a combined result of previously performed analysis in order to improve the result of asingle model. The proposed learning schema, termed S2-Ensemble, is applied to several unsupervised learning algorithms within the family of topology maps, such as the Self-Organizing Maps and the Neural Gas. This study also includes a thorough research of the characteristics of these novel schemes, by means quality measures, which allow a complete analysis of the resultant classifiers from the viewpoint of various perspectives over the different ways that these classifiers are used. The
Název v anglickém jazyce
THE S2-ENSEMBLE FUSION ALGORITHM
Popis výsledku anglicky
This paper presents a novel model for performing classification and visualization of high-dimensional data by means of combining two enhancing techniques. The first is a semi-supervised learning, an extension of the supervised learning used to incorporate unlabeled information to the learning process. The second is an ensemble learning to replicate the analysis performed, followed by a fusion mechanism that yields as a combined result of previously performed analysis in order to improve the result of asingle model. The proposed learning schema, termed S2-Ensemble, is applied to several unsupervised learning algorithms within the family of topology maps, such as the Self-Organizing Maps and the Neural Gas. This study also includes a thorough research of the characteristics of these novel schemes, by means quality measures, which allow a complete analysis of the resultant classifiers from the viewpoint of various perspectives over the different ways that these classifiers are used. The
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Neural Systems
ISSN
0129-0657
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
20
Strana od-do
505-525
Kód UT WoS článku
000297557900006
EID výsledku v databázi Scopus
—