An accelerated augmented Lagrangian algorithm with adaptive orthogonalization strategy for bound and equality constrained quadratic programming and its application to large-scale contact problems of elasticity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F21%3A10248065" target="_blank" >RIV/61989100:27740/21:10248065 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/21:10248065
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0377042721001850" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042721001850</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2021.113565" target="_blank" >10.1016/j.cam.2021.113565</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An accelerated augmented Lagrangian algorithm with adaptive orthogonalization strategy for bound and equality constrained quadratic programming and its application to large-scale contact problems of elasticity
Popis výsledku v původním jazyce
Augmented Lagrangian method is a well established tool for the solution of optimization problems with equality constraints. If combined with effective algorithms for the solution of bound constrained quadratic programming problems, it can solve efficiently very large problems with bound and linear equality constraints. The point of this paper is to show that the performance of the algorithm can be essentially improved by enhancing the information on the free set of current iterates into the reorthogonalization of equality constraints. The improvement is demonstrated on the numerical solution of a large problem arising from the application of domain decomposition methods to the solution of discretized elliptic variational inequality describing a variant of Hertz's two-body contact problem. (C) 2021 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
An accelerated augmented Lagrangian algorithm with adaptive orthogonalization strategy for bound and equality constrained quadratic programming and its application to large-scale contact problems of elasticity
Popis výsledku anglicky
Augmented Lagrangian method is a well established tool for the solution of optimization problems with equality constraints. If combined with effective algorithms for the solution of bound constrained quadratic programming problems, it can solve efficiently very large problems with bound and linear equality constraints. The point of this paper is to show that the performance of the algorithm can be essentially improved by enhancing the information on the free set of current iterates into the reorthogonalization of equality constraints. The improvement is demonstrated on the numerical solution of a large problem arising from the application of domain decomposition methods to the solution of discretized elliptic variational inequality describing a variant of Hertz's two-body contact problem. (C) 2021 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of computational and applied mathematics
ISSN
0377-0427
e-ISSN
—
Svazek periodika
394
Číslo periodika v rámci svazku
1 October 2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000645665800018
EID výsledku v databázi Scopus
2-s2.0-85104134705