Solitary wave solutions of Sawada-Kotera equation using two efficient analytical methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F23%3A10253750" target="_blank" >RIV/61989100:27740/23:10253750 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aimspress.com/article/doi/10.3934/math.20231601" target="_blank" >https://www.aimspress.com/article/doi/10.3934/math.20231601</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/math.20231601" target="_blank" >10.3934/math.20231601</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solitary wave solutions of Sawada-Kotera equation using two efficient analytical methods
Popis výsledku v původním jazyce
Correspondence: muhammad.abbas@uos.edu.pk; Abstract: The soliton solutions are one of the stable solutions where nonlinearity and dispersion are perfectly balanced. They are used in a wide variety of physical fields, including plasma, solid state, neuronal, biological production, and diffusion processes. Different analytical methods have been used until now to obtain the soliton solutions of the Sawada-Kotera (SK) equation. The purpose of this study is to offer two successful analytical methods for solving the classical (1+1) dimensional Sawada-Kotera (SK) equation. In order to solve the partial differential equation (PDE), both the modified auxiliary equation method (MAEM) and the extended direct algebraic method are applied. The classical fifth-order SK equation is examined in this study, leading to a variety of precise soliton solutions, including single, periodic, and dark soliton, which are obtained analytically. To illustrate the effect of the parameters, the results are shown in graphical form.
Název v anglickém jazyce
Solitary wave solutions of Sawada-Kotera equation using two efficient analytical methods
Popis výsledku anglicky
Correspondence: muhammad.abbas@uos.edu.pk; Abstract: The soliton solutions are one of the stable solutions where nonlinearity and dispersion are perfectly balanced. They are used in a wide variety of physical fields, including plasma, solid state, neuronal, biological production, and diffusion processes. Different analytical methods have been used until now to obtain the soliton solutions of the Sawada-Kotera (SK) equation. The purpose of this study is to offer two successful analytical methods for solving the classical (1+1) dimensional Sawada-Kotera (SK) equation. In order to solve the partial differential equation (PDE), both the modified auxiliary equation method (MAEM) and the extended direct algebraic method are applied. The classical fifth-order SK equation is examined in this study, leading to a variety of precise soliton solutions, including single, periodic, and dark soliton, which are obtained analytically. To illustrate the effect of the parameters, the results are shown in graphical form.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AIMS Mathematics
ISSN
2473-6988
e-ISSN
2473-6988
Svazek periodika
8
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
31268-31292
Kód UT WoS článku
001130553900001
EID výsledku v databázi Scopus
—