Obviating Ligand Exchange Preserves the Intact Surface of HgTe Colloidal Quantum Dots and Enhances Performance of Short Wavelength Infrared Photodetectors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254127" target="_blank" >RIV/61989100:27740/24:10254127 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/adma.202306518" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/adma.202306518</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adma.202306518" target="_blank" >10.1002/adma.202306518</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Obviating Ligand Exchange Preserves the Intact Surface of HgTe Colloidal Quantum Dots and Enhances Performance of Short Wavelength Infrared Photodetectors
Popis výsledku v původním jazyce
A large volume, scalable synthesis procedure of HgTe quantum dots (QDs) capped initially with short-chain conductive ligands ensures ligand exchange-free and simple device fabrication. An effective n- or p-type self-doping of HgTe QDs is achieved by varying cation-anion ratio, as well as shifting the Fermi level position by introducing single- or double-cyclic thiol ligands, that is, 2-furanmethanethiol (FMT) or 2,5-dimercapto-3,4-thiadiasole (DMTD) in the synthesis. This allows for preserving the intact surface of the HgTe QDs, thus ensuring a one order of magnitude reduced surface trap density compared with HgTe subjected to solid-state ligand exchange. The charge carrier diffusion length can be extended from 50 to 90 nm when the device active area consists of a bi-layer of cation-rich HgTe QDs capped with DMTD and FMT, respectively. As a result, the responsivity under 1340 nm illumination is boosted to 1 AWMINUS SIGN 1 at zero bias and up to 40 AWMINUS SIGN 1 under MINUS SIGN 1 V bias at room temperature. Due to high noise current density, the specific detectivity of these photodetectors reaches up to 1010 Jones at room temperature and under an inert atmosphere. Meanwhile, high photoconductive gain ensures a rise in the external quantum efficiency of up to 1000% under reverse bias.
Název v anglickém jazyce
Obviating Ligand Exchange Preserves the Intact Surface of HgTe Colloidal Quantum Dots and Enhances Performance of Short Wavelength Infrared Photodetectors
Popis výsledku anglicky
A large volume, scalable synthesis procedure of HgTe quantum dots (QDs) capped initially with short-chain conductive ligands ensures ligand exchange-free and simple device fabrication. An effective n- or p-type self-doping of HgTe QDs is achieved by varying cation-anion ratio, as well as shifting the Fermi level position by introducing single- or double-cyclic thiol ligands, that is, 2-furanmethanethiol (FMT) or 2,5-dimercapto-3,4-thiadiasole (DMTD) in the synthesis. This allows for preserving the intact surface of the HgTe QDs, thus ensuring a one order of magnitude reduced surface trap density compared with HgTe subjected to solid-state ligand exchange. The charge carrier diffusion length can be extended from 50 to 90 nm when the device active area consists of a bi-layer of cation-rich HgTe QDs capped with DMTD and FMT, respectively. As a result, the responsivity under 1340 nm illumination is boosted to 1 AWMINUS SIGN 1 at zero bias and up to 40 AWMINUS SIGN 1 under MINUS SIGN 1 V bias at room temperature. Due to high noise current density, the specific detectivity of these photodetectors reaches up to 1010 Jones at room temperature and under an inert atmosphere. Meanwhile, high photoconductive gain ensures a rise in the external quantum efficiency of up to 1000% under reverse bias.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Materials
ISSN
0935-9648
e-ISSN
1521-4095
Svazek periodika
36
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
001102489800001
EID výsledku v databázi Scopus
2-s2.0-85176561300