Symmetry and complexity: a Lie symmetry method to bifurcation, chaos, multistability and soliton solutions of the nonlinear generalized advection-diffusion-reaction equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255147" target="_blank" >RIV/61989100:27740/24:10255147 - isvavai.cz</a>
Výsledek na webu
<a href="http://10.1088/1402-4896/ad4fed" target="_blank" >http://10.1088/1402-4896/ad4fed</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1402-4896/ad4fed" target="_blank" >10.1088/1402-4896/ad4fed</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Symmetry and complexity: a Lie symmetry method to bifurcation, chaos, multistability and soliton solutions of the nonlinear generalized advection-diffusion-reaction equation
Popis výsledku v původním jazyce
This paper deals with the complexities of nonlinear dynamics within the nonlinear generalized advection-diffusion-reaction equation, which describes intricate transport phenomena involving advection, diffusion, and reaction processes occurring simultaneously. Through the utilization of the Lie symmetry approach, we thoroughly examine this proposed model, transforming the partial differential equation into an ordinary differential equation using similarity reduction techniques to facilitate a more comprehensive analysis. Exact solutions for this transformed equation are derived employing the extended simplest equation method and the new extended direct algebraic method. To enhance understanding, contour plots along with 2D and 3D visualizations of solutions are employed. Additionally, we explore bifurcation and chaotic behaviors through a qualitative analysis of the model. Phase portraits are meticulously scrutinized across various parameter values, offering insights into system behavior. The introduction of an external periodic strength allows us to utilize various tools including time series, 3D, and 2D phase patterns to discern chaotic and quasi-periodic behaviors. Furthermore, a multistability analysis is conducted to examine the impacts of diverse initial conditions. These findings underscore the efficacy and practicality of the proposed methodologies in evaluating soliton solutions and elucidating phase dynamics across a spectrum of nonlinear models, offering novel perspectives on intricate physical phenomena
Název v anglickém jazyce
Symmetry and complexity: a Lie symmetry method to bifurcation, chaos, multistability and soliton solutions of the nonlinear generalized advection-diffusion-reaction equation
Popis výsledku anglicky
This paper deals with the complexities of nonlinear dynamics within the nonlinear generalized advection-diffusion-reaction equation, which describes intricate transport phenomena involving advection, diffusion, and reaction processes occurring simultaneously. Through the utilization of the Lie symmetry approach, we thoroughly examine this proposed model, transforming the partial differential equation into an ordinary differential equation using similarity reduction techniques to facilitate a more comprehensive analysis. Exact solutions for this transformed equation are derived employing the extended simplest equation method and the new extended direct algebraic method. To enhance understanding, contour plots along with 2D and 3D visualizations of solutions are employed. Additionally, we explore bifurcation and chaotic behaviors through a qualitative analysis of the model. Phase portraits are meticulously scrutinized across various parameter values, offering insights into system behavior. The introduction of an external periodic strength allows us to utilize various tools including time series, 3D, and 2D phase patterns to discern chaotic and quasi-periodic behaviors. Furthermore, a multistability analysis is conducted to examine the impacts of diverse initial conditions. These findings underscore the efficacy and practicality of the proposed methodologies in evaluating soliton solutions and elucidating phase dynamics across a spectrum of nonlinear models, offering novel perspectives on intricate physical phenomena
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica Scripta
ISSN
0031-8949
e-ISSN
1402-4896
Svazek periodika
99
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
001249936800001
EID výsledku v databázi Scopus
2-s2.0-85195540764