Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Numerical study of unsteady flow behavior of Cu-ethylene glycol nanoparticle on radially stretching sheet with Joule Heating effect

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255717" target="_blank" >RIV/61989100:27740/24:10255717 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2352507X24002464" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352507X24002464</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.nanoso.2024.101334" target="_blank" >10.1016/j.nanoso.2024.101334</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Numerical study of unsteady flow behavior of Cu-ethylene glycol nanoparticle on radially stretching sheet with Joule Heating effect

  • Popis výsledku v původním jazyce

    This article proposes a mathematical investigation of unsteady flow and heat transfer in the presence of Joule Heating over a radially stretching sheet using a nanofluid of Cu-Ethylene glycol. With an extensive numerical study, we reveal the novel interaction between the shape factors of nanoparticles and surface deformations brought about by stretching. As opposed to earlier studies that have mostly concentrated on traditional nanoparticle forms, our investigation methodically looks at the unique behaviors of Cu-EG nanoparticles on stretching surfaces. The research findings offer great potential for numerous practical applications, in addition to providing insight into basic concepts related to fluid dynamics and heat transfer. The solution to this issue is significant for enhancing thermal management in manufacturing environments, such as cooling systems used in aerospace and electronics. Therefore, our work establishes a foundation for novel methods of creating materials with customized qualities, opening the door for the creation of next-generation technologies that are more sustainable and functional. A numerical solution of the highly non-linear ordinary differential equation is attained with suitable boundary conditions by applying BVP4C in MATLAB. Impact of pertinent parameters on Cu-Ethylene glycol nanofluid Joule Heating concentration, as well as Eckert, Prandtl, and Biot-number on flow and heat transport, are studied. Important results show that the Joule Heating effect raises the total heat transfer rate by roughly 15 %, and the addition of Cu nanoparticles improves thermal conductivity by around 22 %. The findings show that the combined influences of Joule Heating and nanoparticle concentration greatly increase the heat transfer efficiency, offering important new information for the optimization of cooling systems in a range of industrial applications. Finding of the current study is that the shape factor of platelets effectively transfers heat and flow, with sphere forms convey the least amount of heat. (C) 2024 Elsevier B.V.

  • Název v anglickém jazyce

    Numerical study of unsteady flow behavior of Cu-ethylene glycol nanoparticle on radially stretching sheet with Joule Heating effect

  • Popis výsledku anglicky

    This article proposes a mathematical investigation of unsteady flow and heat transfer in the presence of Joule Heating over a radially stretching sheet using a nanofluid of Cu-Ethylene glycol. With an extensive numerical study, we reveal the novel interaction between the shape factors of nanoparticles and surface deformations brought about by stretching. As opposed to earlier studies that have mostly concentrated on traditional nanoparticle forms, our investigation methodically looks at the unique behaviors of Cu-EG nanoparticles on stretching surfaces. The research findings offer great potential for numerous practical applications, in addition to providing insight into basic concepts related to fluid dynamics and heat transfer. The solution to this issue is significant for enhancing thermal management in manufacturing environments, such as cooling systems used in aerospace and electronics. Therefore, our work establishes a foundation for novel methods of creating materials with customized qualities, opening the door for the creation of next-generation technologies that are more sustainable and functional. A numerical solution of the highly non-linear ordinary differential equation is attained with suitable boundary conditions by applying BVP4C in MATLAB. Impact of pertinent parameters on Cu-Ethylene glycol nanofluid Joule Heating concentration, as well as Eckert, Prandtl, and Biot-number on flow and heat transport, are studied. Important results show that the Joule Heating effect raises the total heat transfer rate by roughly 15 %, and the addition of Cu nanoparticles improves thermal conductivity by around 22 %. The findings show that the combined influences of Joule Heating and nanoparticle concentration greatly increase the heat transfer efficiency, offering important new information for the optimization of cooling systems in a range of industrial applications. Finding of the current study is that the shape factor of platelets effectively transfers heat and flow, with sphere forms convey the least amount of heat. (C) 2024 Elsevier B.V.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nano-Structures &amp; Nano-Objects

  • ISSN

    2352-507X

  • e-ISSN

  • Svazek periodika

    40

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85204354704