Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bifurcation analysis, and exact solutions of the two-mode Cahn–Allen equation by a novel variable coefficient auxiliary equation method

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255719" target="_blank" >RIV/61989100:27740/24:10255719 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2211379724005679?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2211379724005679?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rinp.2024.107882" target="_blank" >10.1016/j.rinp.2024.107882</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bifurcation analysis, and exact solutions of the two-mode Cahn–Allen equation by a novel variable coefficient auxiliary equation method

  • Popis výsledku v původním jazyce

    This document elaborates on a newly introduced analytical method known as the &quot;Variable Coefficient Generalized Abel Equation Method,&quot; as proposed by Hashemi in Hashemi (2024), designed specifically for addressing the two-mode Cahn-Allen equation. Diverging from conventional techniques that heavily rely on constant coefficient ordinary differential equations and auxiliary ordinary differential equations, our method innovatively incorporates variable coefficient ordinary differential equations within a sub-equation framework. Demonstrating its versatility, we apply this innovative technique to the two-mode Cahn-Allen equation, showcasing its effectiveness and efficiency through the derivation of analytical solutions. Notably, this method emerges as a promising tool for tackling complex nonlinear partial differential equations prevalent in fluid dynamics and wave propagation scenarios. Beyond merely expanding the repertoire of available analytical tools, our approach contributes to advancing solutions for various models within the realm of mathematical physics. Various forms of exact solutions, including exponential-type solutions, Kink solitons, dark solitons, and bright soliton solutions, are obtained for the model under consideration. Moreover, we delve into the analysis of bifurcation, chaotic behavior, and sensitivity within the context of the two-mode Cahn-Allen model, further enhancing the depth and breadth of our study. Three equilibria are analyzed across various classifications, including center point, focus point, saddle point, and node point. Chaotic behavior of the corresponding dynamical system is considered by adding the function ω1sin(ω2ζ). Lastly, sensitivity analysis of the system is conducted by examining different parameters of the model and imposing noise to the initial conditions. (C) 2024 The Author(s)

  • Název v anglickém jazyce

    Bifurcation analysis, and exact solutions of the two-mode Cahn–Allen equation by a novel variable coefficient auxiliary equation method

  • Popis výsledku anglicky

    This document elaborates on a newly introduced analytical method known as the &quot;Variable Coefficient Generalized Abel Equation Method,&quot; as proposed by Hashemi in Hashemi (2024), designed specifically for addressing the two-mode Cahn-Allen equation. Diverging from conventional techniques that heavily rely on constant coefficient ordinary differential equations and auxiliary ordinary differential equations, our method innovatively incorporates variable coefficient ordinary differential equations within a sub-equation framework. Demonstrating its versatility, we apply this innovative technique to the two-mode Cahn-Allen equation, showcasing its effectiveness and efficiency through the derivation of analytical solutions. Notably, this method emerges as a promising tool for tackling complex nonlinear partial differential equations prevalent in fluid dynamics and wave propagation scenarios. Beyond merely expanding the repertoire of available analytical tools, our approach contributes to advancing solutions for various models within the realm of mathematical physics. Various forms of exact solutions, including exponential-type solutions, Kink solitons, dark solitons, and bright soliton solutions, are obtained for the model under consideration. Moreover, we delve into the analysis of bifurcation, chaotic behavior, and sensitivity within the context of the two-mode Cahn-Allen model, further enhancing the depth and breadth of our study. Three equilibria are analyzed across various classifications, including center point, focus point, saddle point, and node point. Chaotic behavior of the corresponding dynamical system is considered by adding the function ω1sin(ω2ζ). Lastly, sensitivity analysis of the system is conducted by examining different parameters of the model and imposing noise to the initial conditions. (C) 2024 The Author(s)

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Results in Physics

  • ISSN

    2211-3797

  • e-ISSN

  • Svazek periodika

    64

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85199766266