A graph-theoretic approach to ring analysis: Dominant metric dimensions in zero-divisor graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256443" target="_blank" >RIV/61989100:27740/24:10256443 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405844024070208?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405844024070208?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.heliyon.2024.e30989" target="_blank" >10.1016/j.heliyon.2024.e30989</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A graph-theoretic approach to ring analysis: Dominant metric dimensions in zero-divisor graphs
Popis výsledku v původním jazyce
This article investigates the concept of dominant metric dimensions in zero divisor graphs (ZDgraphs) associated with rings. Consider a finite commutative ring with unity, denoted as R, where nonzero elements x and y are identified as zero divisors if their product results in zero (x . y = 0). The set of zero divisors in ring R is referred to as L(R). To analyze various algebraic properties of R, a graph known as the zero-divisor graph is constructed using L(R). This manuscript establishes specific general bounds for the dominant metric dimension (Ddim) concerning the ZD-graph of R. To achieve this objective, we examine the zero divisor graphs for specific rings, such as the ring of Gaussian integers modulo m, denoted as Zm[i], the ring of integers modulo n, denoted as Zn, and some quotient polynomial rings. Our research unveils new insights into the structural similarities and differences among commutative rings sharing identical metric dimensions and dominant metric dimensions. Additionally, we present a general result outlining bounds for the dominant metric dimension expressed in terms of the maximum degree, girth, clique number, and diameter of the associated ZD-graphs. Through this exploration, we aim to provide a comprehensive framework for analyzing commutative rings and their associated zero divisor graphs, thereby advancing both theoretical knowledge and practical applications in diverse domains.
Název v anglickém jazyce
A graph-theoretic approach to ring analysis: Dominant metric dimensions in zero-divisor graphs
Popis výsledku anglicky
This article investigates the concept of dominant metric dimensions in zero divisor graphs (ZDgraphs) associated with rings. Consider a finite commutative ring with unity, denoted as R, where nonzero elements x and y are identified as zero divisors if their product results in zero (x . y = 0). The set of zero divisors in ring R is referred to as L(R). To analyze various algebraic properties of R, a graph known as the zero-divisor graph is constructed using L(R). This manuscript establishes specific general bounds for the dominant metric dimension (Ddim) concerning the ZD-graph of R. To achieve this objective, we examine the zero divisor graphs for specific rings, such as the ring of Gaussian integers modulo m, denoted as Zm[i], the ring of integers modulo n, denoted as Zn, and some quotient polynomial rings. Our research unveils new insights into the structural similarities and differences among commutative rings sharing identical metric dimensions and dominant metric dimensions. Additionally, we present a general result outlining bounds for the dominant metric dimension expressed in terms of the maximum degree, girth, clique number, and diameter of the associated ZD-graphs. Through this exploration, we aim to provide a comprehensive framework for analyzing commutative rings and their associated zero divisor graphs, thereby advancing both theoretical knowledge and practical applications in diverse domains.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Heliyon
ISSN
2405-8440
e-ISSN
2405-8440
Svazek periodika
10
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
001298423700001
EID výsledku v databázi Scopus
2-s2.0-85193532089