Matematický model pseudointeraktivní soustavy: 1D těleso na nelineárním podloží - I. Teoretické aspekty
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F07%3A00004906" target="_blank" >RIV/61989592:15310/07:00004906 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mathematical Model of Pseudointeractive set: 1D Body on Non-linear Subsoil - I. Theoretical Aspects
Popis výsledku v původním jazyce
Mathematical model of pseudointeractive set of an elastic body (beam, plate) and subsoil for a special class of linear and non-linear response functions has been introduced. Brief review of the fundamental mathematical apparatus used for the analysis ofthe resulting non-linear boundary-value problem has been given and discussed. Some of the typical statements concerning solvability of the model problem having form of linear and non-linear coercive and semi-coercive variational equation or inequality have been formulated, including sketches and remarks to their proofs. The emphasis has been focused on the semi-coercive case representing the typical problem of a free (unattached) body lying on a 'unilateral' subsoil defined by non-linear response function. Extra conditions of solvability have been formulated in the semi-coercive cases. The decomposition of Sobolev function space of kinematically admissible displacements into a cone of rigid displacement and its negative polar cone of di
Název v anglickém jazyce
Mathematical Model of Pseudointeractive set: 1D Body on Non-linear Subsoil - I. Theoretical Aspects
Popis výsledku anglicky
Mathematical model of pseudointeractive set of an elastic body (beam, plate) and subsoil for a special class of linear and non-linear response functions has been introduced. Brief review of the fundamental mathematical apparatus used for the analysis ofthe resulting non-linear boundary-value problem has been given and discussed. Some of the typical statements concerning solvability of the model problem having form of linear and non-linear coercive and semi-coercive variational equation or inequality have been formulated, including sketches and remarks to their proofs. The emphasis has been focused on the semi-coercive case representing the typical problem of a free (unattached) body lying on a 'unilateral' subsoil defined by non-linear response function. Extra conditions of solvability have been formulated in the semi-coercive cases. The decomposition of Sobolev function space of kinematically admissible displacements into a cone of rigid displacement and its negative polar cone of di
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Mechanics
ISSN
1802-1484
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
15
Strana od-do
311-325
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—