Influence of BII Backbone Substates on DNA Twist: A Unified View and Comparison of Simulation and Experiment for All 136 Distinct Tetranucleotide Sequences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73583955" target="_blank" >RIV/61989592:15310/17:73583955 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081707:_____/17:00477377 RIV/60461373:22310/17:43914586
Výsledek na webu
<a href="http://pubs.acs.org/doi/10.1021/acs.jcim.6b00621" target="_blank" >http://pubs.acs.org/doi/10.1021/acs.jcim.6b00621</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jcim.6b00621" target="_blank" >10.1021/acs.jcim.6b00621</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence of BII Backbone Substates on DNA Twist: A Unified View and Comparison of Simulation and Experiment for All 136 Distinct Tetranucleotide Sequences
Popis výsledku v původním jazyce
Reliable representation of the B-DNA base-pair step twist is one of the crucial requirements for theoretical modeling of DNA supercoiling and other biologically relevant phenomena in B-DNA. It has long been suspected that the twist is inaccurately described by current empirical force fields. Unfortunately, comparison of simulation results with experiments is not straightforward because of the presence of BII backbone substates, whose populations may differ in experimental and simulation ensembles. In this work, we provide a comprehensive view of the effect of BII substates on the overall B-DNA helix twist and show how to reliably compare twist values from experiment and simulation in two scenarios. First, for longer DNA segments freely moving in solution, we show that sequence averaged twists of different BI/BII ensembles can be compared directly because of approximate cancellation of the opposing BII effects. Second, for sequence-specific data, such as a particular base-pair step or tetranucleotide twist, can be compared only for a clearly defined BI/BII backbone conformation. For the purpose of force field testing, we designed a compact set of fourteen 22-base-pair B-DNA duplexes (Set 14) containing all 136 distinct tetranucleotide sequences and carried out a total of 84 mu s of molecular dynamics simulations, primarily with the OL15 force field. Our results show that the ff99bsc0 epsilon zeta(OL1 chi OL4), parmbscl, and OL15 force fields model the B-DNA helical twist in good agreement with X-ray and minicircle ligation experiments. The comprehensive understanding obtained regarding the effect of BEE substates on the base-pair step geometry should aid meaningful comparisons of various conformational ensembles in future research.
Název v anglickém jazyce
Influence of BII Backbone Substates on DNA Twist: A Unified View and Comparison of Simulation and Experiment for All 136 Distinct Tetranucleotide Sequences
Popis výsledku anglicky
Reliable representation of the B-DNA base-pair step twist is one of the crucial requirements for theoretical modeling of DNA supercoiling and other biologically relevant phenomena in B-DNA. It has long been suspected that the twist is inaccurately described by current empirical force fields. Unfortunately, comparison of simulation results with experiments is not straightforward because of the presence of BII backbone substates, whose populations may differ in experimental and simulation ensembles. In this work, we provide a comprehensive view of the effect of BII substates on the overall B-DNA helix twist and show how to reliably compare twist values from experiment and simulation in two scenarios. First, for longer DNA segments freely moving in solution, we show that sequence averaged twists of different BI/BII ensembles can be compared directly because of approximate cancellation of the opposing BII effects. Second, for sequence-specific data, such as a particular base-pair step or tetranucleotide twist, can be compared only for a clearly defined BI/BII backbone conformation. For the purpose of force field testing, we designed a compact set of fourteen 22-base-pair B-DNA duplexes (Set 14) containing all 136 distinct tetranucleotide sequences and carried out a total of 84 mu s of molecular dynamics simulations, primarily with the OL15 force field. Our results show that the ff99bsc0 epsilon zeta(OL1 chi OL4), parmbscl, and OL15 force fields model the B-DNA helical twist in good agreement with X-ray and minicircle ligation experiments. The comprehensive understanding obtained regarding the effect of BEE substates on the base-pair step geometry should aid meaningful comparisons of various conformational ensembles in future research.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Information and Modeling
ISSN
1549-9596
e-ISSN
—
Svazek periodika
57
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
275-287
Kód UT WoS článku
000395226100018
EID výsledku v databázi Scopus
2-s2.0-85014205547