Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73595159" target="_blank" >RIV/61989592:15310/19:73595159 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201805513" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201805513</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adma.201805513" target="_blank" >10.1002/adma.201805513</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage
Popis výsledku v původním jazyce
Photoelectrochemical (PEC) water splitting is a promising approach for producing hydrogen without greenhouse gas emissions. Despite decades of unceasing efforts, the efficiency of PEC devices based on earth-abundant semiconductors is still limited by their low light absorption, low charge mobility, high charge-carrier recombination, and reduced diffusion length. Plasmonics has recently emerged as an effective approach for overcoming these limitations, although a full understanding of the involved physical mechanisms remains elusive. Here, the reported plasmonic effects are outlined, such as resonant energy transfer, scattering, hot electron injection, guided modes, and photonic effects, as well as the less investigated catalytic and thermal effects used in PEC water splitting. In each section, the fundamentals are reviewed and the most representative examples are discussed, illustrating possible future developments for achieving improved efficiency of plasmonic photoelectrodes.
Název v anglickém jazyce
Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage
Popis výsledku anglicky
Photoelectrochemical (PEC) water splitting is a promising approach for producing hydrogen without greenhouse gas emissions. Despite decades of unceasing efforts, the efficiency of PEC devices based on earth-abundant semiconductors is still limited by their low light absorption, low charge mobility, high charge-carrier recombination, and reduced diffusion length. Plasmonics has recently emerged as an effective approach for overcoming these limitations, although a full understanding of the involved physical mechanisms remains elusive. Here, the reported plasmonic effects are outlined, such as resonant energy transfer, scattering, hot electron injection, guided modes, and photonic effects, as well as the less investigated catalytic and thermal effects used in PEC water splitting. In each section, the fundamentals are reviewed and the most representative examples are discussed, illustrating possible future developments for achieving improved efficiency of plasmonic photoelectrodes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Materials
ISSN
0935-9648
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
31
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
23
Strana od-do
"1805513-1"-"1805513-23"
Kód UT WoS článku
000484129400006
EID výsledku v databázi Scopus
2-s2.0-85061895517