Performance Testing on Marker Clustering and Heatmap Visualization Techniques: A Comparative Study on JavaScript Mapping Libraries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73598467" target="_blank" >RIV/61989592:15310/19:73598467 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2220-9964/8/8/348/htm" target="_blank" >https://www.mdpi.com/2220-9964/8/8/348/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ijgi8080348" target="_blank" >10.3390/ijgi8080348</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance Testing on Marker Clustering and Heatmap Visualization Techniques: A Comparative Study on JavaScript Mapping Libraries
Popis výsledku v původním jazyce
We are now generating exponentially more data from more sources than a few years ago. Big data, an already familiar term, has been generally defined as a massive volume of structured, semi-structured, and/or unstructured data, which may not be effectively managed and processed using traditional databases and software techniques. It could be problematic to visualize easily and quickly a large amount of data via an Internet platform. From this perspective, the main aim of the paper is to test point data visualization possibilities of selected JavaScript Mapping Libraries to measure their performance and ability to cope with a big amount of data. Nine datasets containing 10,000 to 3,000,000 points were generated from the Nature Conservation Database. Five libraries for marker clustering and two libraries for heatmap visualization were analyzed. Loading time and the ability to visualize large data sets were compared for each dataset and each library. The best-evaluated library was a Mapbox GL JS (Graphics Library JavaScript) with the highest overall performance. Some of the tested libraries were not able to handle the desired amount of data. In general, an amount of less than 100,000 points was indicated as the threshold for implementation without a noticeable slowdown in performance. Their usage can be a limiting factor for point data visualization in such a dynamic environment as we live nowadays
Název v anglickém jazyce
Performance Testing on Marker Clustering and Heatmap Visualization Techniques: A Comparative Study on JavaScript Mapping Libraries
Popis výsledku anglicky
We are now generating exponentially more data from more sources than a few years ago. Big data, an already familiar term, has been generally defined as a massive volume of structured, semi-structured, and/or unstructured data, which may not be effectively managed and processed using traditional databases and software techniques. It could be problematic to visualize easily and quickly a large amount of data via an Internet platform. From this perspective, the main aim of the paper is to test point data visualization possibilities of selected JavaScript Mapping Libraries to measure their performance and ability to cope with a big amount of data. Nine datasets containing 10,000 to 3,000,000 points were generated from the Nature Conservation Database. Five libraries for marker clustering and two libraries for heatmap visualization were analyzed. Loading time and the ability to visualize large data sets were compared for each dataset and each library. The best-evaluated library was a Mapbox GL JS (Graphics Library JavaScript) with the highest overall performance. Some of the tested libraries were not able to handle the desired amount of data. In general, an amount of less than 100,000 points was indicated as the threshold for implementation without a noticeable slowdown in performance. Their usage can be a limiting factor for point data visualization in such a dynamic environment as we live nowadays
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-05432S" target="_blank" >GA18-05432S: Prostorová syntéza založená na pokročilých metodách geocomputation</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ISPRS International Journal of Geo-Information
ISSN
2220-9964
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
8
Strana od-do
"348-1"-"348-8"
Kód UT WoS článku
000482985000047
EID výsledku v databázi Scopus
—