Exploring How Customers Shop for Meat Products
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F14%3A00213758" target="_blank" >RIV/62156489:43110/14:00213758 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring How Customers Shop for Meat Products
Popis výsledku v původním jazyce
This contribution contains problems of marketing research data classification by means of data mining algorithms. Three basic methods are described, classification with the aid of Multi-layer Perceptron neural network with Back-propagation algorithm, classification with the aid of Bayesian Networks and classification with the aid of Decision Tree. Finally, applicability of these algorithms is compared. These algorithms are applied over the data from a survey about consumer behavior in the food market inthe Czech Republic (n = 1127, data collection in 2011). The data were further analyzed with statistical tools, such as cluster analysis and analysis of contingency. The best achieved result was 42.65% by method LMT. Although this level may seem to be relatively low, due to the fact that also the dependencies between individual 20 factors and the 5 possible store loyalty options revealed by analysis of contingency were not strong, this result shows that the tools can reach relatively hig
Název v anglickém jazyce
Exploring How Customers Shop for Meat Products
Popis výsledku anglicky
This contribution contains problems of marketing research data classification by means of data mining algorithms. Three basic methods are described, classification with the aid of Multi-layer Perceptron neural network with Back-propagation algorithm, classification with the aid of Bayesian Networks and classification with the aid of Decision Tree. Finally, applicability of these algorithms is compared. These algorithms are applied over the data from a survey about consumer behavior in the food market inthe Czech Republic (n = 1127, data collection in 2011). The data were further analyzed with statistical tools, such as cluster analysis and analysis of contingency. The best achieved result was 42.65% by method LMT. Although this level may seem to be relatively low, due to the fact that also the dependencies between individual 20 factors and the 5 possible store loyalty options revealed by analysis of contingency were not strong, this result shows that the tools can reach relatively hig
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
AE - Řízení, správa a administrativa
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Recent Advances in Economics, Management and Marketing
ISBN
978-960-474-364-3
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
50-54
Název nakladatele
WSEAS Press
Místo vydání
Cambridge, MA, USA
Místo konání akce
Cambridge, MA, USA
Datum konání akce
1. 1. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—