Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparative Analysis of Selected Time Series Forecasting Approaches for Indian Markets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F24%3A43925841" target="_blank" >RIV/62156489:43110/24:43925841 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.11118/978-80-7509-990-7-0167" target="_blank" >https://doi.org/10.11118/978-80-7509-990-7-0167</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.11118/978-80-7509-990-7-0167" target="_blank" >10.11118/978-80-7509-990-7-0167</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparative Analysis of Selected Time Series Forecasting Approaches for Indian Markets

  • Popis výsledku v původním jazyce

    Financial market analysis and prediction have been topics of interest to traders and investors for decades. This study assesses the performance of selected time series prediction methods like deep learning algorithms (Long short-term memory model (LSTM)), traditional statistical models (Seasonal Auto Regressive Integrated Moving Approach with eXogenous regressors (SARIMAX)), and advanced ensemble learning algorithms (XGBoost and FB-Prophet) using real-world data from the Indian financial market. The stock prices of Reliance Company serve as a case study, enabling a thorough evaluation of predictive accuracy and errors of the models. A pre-processing approach has been proposed and implemented, integrating significant economic factors (Gold Price, USD to INR conversion, Consumer Price Index (CPI), Wholesale Price Index (WPI) and Indian 10-year yield bond) and evaluated with technical metrics (Mean squared error, Mean Absolute Error and R2 Score). The study investigates how the inclusion of these factors impacts prediction accuracy across the selected time series prediction methods. The comparative evaluation of models before and after the pre-processing method sheds light on the evolving predictive accuracy of LSTM, SARIMAX, FB-Prophet, and XGBoost. The study showed that the SARIMAX (extension of ARIMA with seasonality and exogenous factors) and XGBOOST performed relatively well with the proposed approach while LSTM and FB prophet (though advanced) did not perform as expected in Indian financial markets. This research contributes to advancing the understanding of time series forecasting in the financial market of India, offering practical insights for decision-makers and researchers.

  • Název v anglickém jazyce

    Comparative Analysis of Selected Time Series Forecasting Approaches for Indian Markets

  • Popis výsledku anglicky

    Financial market analysis and prediction have been topics of interest to traders and investors for decades. This study assesses the performance of selected time series prediction methods like deep learning algorithms (Long short-term memory model (LSTM)), traditional statistical models (Seasonal Auto Regressive Integrated Moving Approach with eXogenous regressors (SARIMAX)), and advanced ensemble learning algorithms (XGBoost and FB-Prophet) using real-world data from the Indian financial market. The stock prices of Reliance Company serve as a case study, enabling a thorough evaluation of predictive accuracy and errors of the models. A pre-processing approach has been proposed and implemented, integrating significant economic factors (Gold Price, USD to INR conversion, Consumer Price Index (CPI), Wholesale Price Index (WPI) and Indian 10-year yield bond) and evaluated with technical metrics (Mean squared error, Mean Absolute Error and R2 Score). The study investigates how the inclusion of these factors impacts prediction accuracy across the selected time series prediction methods. The comparative evaluation of models before and after the pre-processing method sheds light on the evolving predictive accuracy of LSTM, SARIMAX, FB-Prophet, and XGBoost. The study showed that the SARIMAX (extension of ARIMA with seasonality and exogenous factors) and XGBOOST performed relatively well with the proposed approach while LSTM and FB prophet (though advanced) did not perform as expected in Indian financial markets. This research contributes to advancing the understanding of time series forecasting in the financial market of India, offering practical insights for decision-makers and researchers.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_017%2F0002334" target="_blank" >EF16_017/0002334: Výzkumná infrastruktura pro mladé vědce</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    26th International Conference Economic Competitiveness and Sustainability: Proceedings

  • ISBN

    978-80-7509-990-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    20

  • Strana od-do

    167-186

  • Název nakladatele

    Mendelova univerzita v Brně

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    21. 3. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku