Comparative Analysis of Selected Time Series Forecasting Approaches for Indian Markets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F24%3A43925841" target="_blank" >RIV/62156489:43110/24:43925841 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.11118/978-80-7509-990-7-0167" target="_blank" >https://doi.org/10.11118/978-80-7509-990-7-0167</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11118/978-80-7509-990-7-0167" target="_blank" >10.11118/978-80-7509-990-7-0167</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparative Analysis of Selected Time Series Forecasting Approaches for Indian Markets
Popis výsledku v původním jazyce
Financial market analysis and prediction have been topics of interest to traders and investors for decades. This study assesses the performance of selected time series prediction methods like deep learning algorithms (Long short-term memory model (LSTM)), traditional statistical models (Seasonal Auto Regressive Integrated Moving Approach with eXogenous regressors (SARIMAX)), and advanced ensemble learning algorithms (XGBoost and FB-Prophet) using real-world data from the Indian financial market. The stock prices of Reliance Company serve as a case study, enabling a thorough evaluation of predictive accuracy and errors of the models. A pre-processing approach has been proposed and implemented, integrating significant economic factors (Gold Price, USD to INR conversion, Consumer Price Index (CPI), Wholesale Price Index (WPI) and Indian 10-year yield bond) and evaluated with technical metrics (Mean squared error, Mean Absolute Error and R2 Score). The study investigates how the inclusion of these factors impacts prediction accuracy across the selected time series prediction methods. The comparative evaluation of models before and after the pre-processing method sheds light on the evolving predictive accuracy of LSTM, SARIMAX, FB-Prophet, and XGBoost. The study showed that the SARIMAX (extension of ARIMA with seasonality and exogenous factors) and XGBOOST performed relatively well with the proposed approach while LSTM and FB prophet (though advanced) did not perform as expected in Indian financial markets. This research contributes to advancing the understanding of time series forecasting in the financial market of India, offering practical insights for decision-makers and researchers.
Název v anglickém jazyce
Comparative Analysis of Selected Time Series Forecasting Approaches for Indian Markets
Popis výsledku anglicky
Financial market analysis and prediction have been topics of interest to traders and investors for decades. This study assesses the performance of selected time series prediction methods like deep learning algorithms (Long short-term memory model (LSTM)), traditional statistical models (Seasonal Auto Regressive Integrated Moving Approach with eXogenous regressors (SARIMAX)), and advanced ensemble learning algorithms (XGBoost and FB-Prophet) using real-world data from the Indian financial market. The stock prices of Reliance Company serve as a case study, enabling a thorough evaluation of predictive accuracy and errors of the models. A pre-processing approach has been proposed and implemented, integrating significant economic factors (Gold Price, USD to INR conversion, Consumer Price Index (CPI), Wholesale Price Index (WPI) and Indian 10-year yield bond) and evaluated with technical metrics (Mean squared error, Mean Absolute Error and R2 Score). The study investigates how the inclusion of these factors impacts prediction accuracy across the selected time series prediction methods. The comparative evaluation of models before and after the pre-processing method sheds light on the evolving predictive accuracy of LSTM, SARIMAX, FB-Prophet, and XGBoost. The study showed that the SARIMAX (extension of ARIMA with seasonality and exogenous factors) and XGBOOST performed relatively well with the proposed approach while LSTM and FB prophet (though advanced) did not perform as expected in Indian financial markets. This research contributes to advancing the understanding of time series forecasting in the financial market of India, offering practical insights for decision-makers and researchers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_017%2F0002334" target="_blank" >EF16_017/0002334: Výzkumná infrastruktura pro mladé vědce</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
26th International Conference Economic Competitiveness and Sustainability: Proceedings
ISBN
978-80-7509-990-7
ISSN
—
e-ISSN
—
Počet stran výsledku
20
Strana od-do
167-186
Název nakladatele
Mendelova univerzita v Brně
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
21. 3. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—