Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of Basic Graph Theory in Autonomous Motion of Robots

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18440%2F21%3A50018268" target="_blank" >RIV/62690094:18440/21:50018268 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62690094:18470/21:50018268

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-7390/9/9/919" target="_blank" >https://www.mdpi.com/2227-7390/9/9/919</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math9090919" target="_blank" >10.3390/math9090919</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of Basic Graph Theory in Autonomous Motion of Robots

  • Popis výsledku v původním jazyce

    Discrete mathematics covers the field of graph theory, which solves various problems in graphs using algorithms, such as coloring graphs. Part of graph theory is focused on algorithms that solve the passage through mazes and labyrinths. This paper presents a study conducted as part of a university course focused on graph theory. The course addressed the problem of high student failure in the mazes and labyrinths chapter. Students’ theoretical knowledge and practical skills in solving algorithms in the maze were low. Therefore, the use of educational robots and their involvement in the teaching of subjects in part focused on mazes and labyrinths. This study shows an easy passage through the individual areas of teaching the science, technology, engineering, and mathematics (STEM) concept. In this article, we describe the research survey and focus on the description and examples of teaching in a university course. Part of the work is the introduction of an easy transition from the theoretical solution of algorithms to their practical implementation on a real autonomous robot. The theoretical part of the course introduced the issues of graph theory and basic algorithms for solving the passage through the labyrinth. The contribution of this study is a change in the approach to teaching graph theory and a greater interconnection of individual areas of STEM to achieve better learning outcomes for science students.

  • Název v anglickém jazyce

    Application of Basic Graph Theory in Autonomous Motion of Robots

  • Popis výsledku anglicky

    Discrete mathematics covers the field of graph theory, which solves various problems in graphs using algorithms, such as coloring graphs. Part of graph theory is focused on algorithms that solve the passage through mazes and labyrinths. This paper presents a study conducted as part of a university course focused on graph theory. The course addressed the problem of high student failure in the mazes and labyrinths chapter. Students’ theoretical knowledge and practical skills in solving algorithms in the maze were low. Therefore, the use of educational robots and their involvement in the teaching of subjects in part focused on mazes and labyrinths. This study shows an easy passage through the individual areas of teaching the science, technology, engineering, and mathematics (STEM) concept. In this article, we describe the research survey and focus on the description and examples of teaching in a university course. Part of the work is the introduction of an easy transition from the theoretical solution of algorithms to their practical implementation on a real autonomous robot. The theoretical part of the course introduced the issues of graph theory and basic algorithms for solving the passage through the labyrinth. The contribution of this study is a change in the approach to teaching graph theory and a greater interconnection of individual areas of STEM to achieve better learning outcomes for science students.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50301 - Education, general; including training, pedagogy, didactics [and education systems]

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    15

  • Strana od-do

    "Article Number: 919"

  • Kód UT WoS článku

    000650588400001

  • EID výsledku v databázi Scopus

    2-s2.0-85105289158