Decision Support Smartphone Application Based on Interval AHP Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F15%3A50004120" target="_blank" >RIV/62690094:18450/15:50004120 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-24306-1_30" target="_blank" >http://dx.doi.org/10.1007/978-3-319-24306-1_30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-24306-1_30" target="_blank" >10.1007/978-3-319-24306-1_30</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decision Support Smartphone Application Based on Interval AHP Method
Popis výsledku v původním jazyce
Multicriteria decision making based on Analytic Hierarchy Process in the health care mobile application is introduced and studied. The application focuses on processing data from internal sensors of a smart phone as well as external sensors in order to monitor current state of a person. Measured data are partly evaluated in the device in order to identify critical situations such as fall of the person, and then are also sent to a server for the deeper analysis. While using AHP method, pairwise comparison matrices have to be created by experts - in our case doctors. Each expert can have different preferences and thus the resulting matrix, created based on the opinions of several experts, may be inconsistent. The method presented in this paper is based on interval judgments and shows how to merge inconsistent and uncertain preference matrices from several experts to deliver a robust and sensitive model for online machine decision making.
Název v anglickém jazyce
Decision Support Smartphone Application Based on Interval AHP Method
Popis výsledku anglicky
Multicriteria decision making based on Analytic Hierarchy Process in the health care mobile application is introduced and studied. The application focuses on processing data from internal sensors of a smart phone as well as external sensors in order to monitor current state of a person. Measured data are partly evaluated in the device in order to identify critical situations such as fall of the person, and then are also sent to a server for the deeper analysis. While using AHP method, pairwise comparison matrices have to be created by experts - in our case doctors. Each expert can have different preferences and thus the resulting matrix, created based on the opinions of several experts, may be inconsistent. The method presented in this paper is based on interval judgments and shows how to merge inconsistent and uncertain preference matrices from several experts to deliver a robust and sensitive model for online machine decision making.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-02424S" target="_blank" >GA14-02424S: Metody operačního výzkumu pro podporu rozhodování v podmínkách neurčitosti</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computational collective intelligence. Part II.
ISBN
978-3-319-24306-1
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
306-315
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Madrid, SPAIN
Datum konání akce
21. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000366123600030