An Artificial Player for a Turn-based Strategy Game
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013523" target="_blank" >RIV/62690094:18450/17:50013523 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-54472-4_43" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-54472-4_43</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-54472-4_43" target="_blank" >10.1007/978-3-319-54472-4_43</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Artificial Player for a Turn-based Strategy Game
Popis výsledku v původním jazyce
This paper describes the design of an artificial intelligent opponent in the Empire Wars turn-based strategy computer game. Several approaches to make the opponent in the game, that has complex rules and a huge state space, are tested. In the first phase, common methods such as heuristics, influence maps, and decision trees are used. While they have many advantages (speed, simplicity and the ability to find a solution in a reasonable time), they provide rather average results. In the second phase, the player is enhanced by an evolutionary algorithm. The algorithm adjusts several parameters of the player that were originally determined empirically. In the third phase, a learning process based on recorded moves from previous games played is used. The results show that incorporating evolutionary algorithms can significantly improve the efficiency of the artificial player without necessarily increasing the processing time.
Název v anglickém jazyce
An Artificial Player for a Turn-based Strategy Game
Popis výsledku anglicky
This paper describes the design of an artificial intelligent opponent in the Empire Wars turn-based strategy computer game. Several approaches to make the opponent in the game, that has complex rules and a huge state space, are tested. In the first phase, common methods such as heuristics, influence maps, and decision trees are used. While they have many advantages (speed, simplicity and the ability to find a solution in a reasonable time), they provide rather average results. In the second phase, the player is enhanced by an evolutionary algorithm. The algorithm adjusts several parameters of the player that were originally determined empirically. In the third phase, a learning process based on recorded moves from previous games played is used. The results show that incorporating evolutionary algorithms can significantly improve the efficiency of the artificial player without necessarily increasing the processing time.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Intelligent Information and Database Systems
ISBN
978-3-319-54471-7
ISSN
0302-9743
e-ISSN
neuvedeno
Počet stran výsledku
11
Strana od-do
455-465
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Kanazawa
Datum konání akce
3. 4. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—