On the Spectral Stability of Kinks in 2D Klein-Gordon Model with Parity-Time-Symmetric Perturbation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F17%3A50013790" target="_blank" >RIV/62690094:18470/17:50013790 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1111/sapm.12156" target="_blank" >http://dx.doi.org/10.1111/sapm.12156</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/sapm.12156" target="_blank" >10.1111/sapm.12156</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Spectral Stability of Kinks in 2D Klein-Gordon Model with Parity-Time-Symmetric Perturbation
Popis výsledku v původním jazyce
In a series of recent works by Demirkaya et al., stability analysis for the static kink solutions to the one-dimensional continuous and discrete KleinGordon equations with a PT -symmetric perturbation has been performed. In the present paper, we study two-dimensional (2D) quadratic operator pencil with a small localized perturbation. Such an operator pencil is motivated by the stability problem for the static kink in 2D Klein-Gordon field taking into account spatially localized PT -symmetric perturbation, which is in the form of viscous friction. Viscous regions with positive and negative viscosity coefficient are balanced. For the considered operator pencil, we show that its essential spectrum has certain critical points generating eigenvalues under the perturbation. Our main results are sufficient conditions ensuring the existence or absence of such eigenvalues as well as the asymptotic expansions for these eigenvalues if they exist.
Název v anglickém jazyce
On the Spectral Stability of Kinks in 2D Klein-Gordon Model with Parity-Time-Symmetric Perturbation
Popis výsledku anglicky
In a series of recent works by Demirkaya et al., stability analysis for the static kink solutions to the one-dimensional continuous and discrete KleinGordon equations with a PT -symmetric perturbation has been performed. In the present paper, we study two-dimensional (2D) quadratic operator pencil with a small localized perturbation. Such an operator pencil is motivated by the stability problem for the static kink in 2D Klein-Gordon field taking into account spatially localized PT -symmetric perturbation, which is in the form of viscous friction. Viscous regions with positive and negative viscosity coefficient are balanced. For the considered operator pencil, we show that its essential spectrum has certain critical points generating eigenvalues under the perturbation. Our main results are sufficient conditions ensuring the existence or absence of such eigenvalues as well as the asymptotic expansions for these eigenvalues if they exist.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
STUDIES IN APPLIED MATHEMATICS
ISSN
0022-2526
e-ISSN
—
Svazek periodika
138
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
317-342
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85006010300