Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Topic identification and sentiment trends in Weibo and WeChat content related to intellectual property in China

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019423" target="_blank" >RIV/62690094:18470/22:50019423 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0040162522005017?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0040162522005017?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.techfore.2022.121980" target="_blank" >10.1016/j.techfore.2022.121980</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Topic identification and sentiment trends in Weibo and WeChat content related to intellectual property in China

  • Popis výsledku v původním jazyce

    Intense frictions in global trade have made intellectual property (IP) an important topic of public concern. Meanwhile, new media and online communities have become important platforms for the public to discuss IP issues. Mining the core topics and judging their sentiment status from the public&apos;s massive online IP data are important means for the government to formulate and evaluate IP policies, for enterprises to carry out R&amp;D and identify business opportunities. Hence, this study aims to conduct topic identification and sentiment trends in Weibo and WeChat content related to IPs in China by employing a novel ensemble method combining the term frequency inverse document frequency (TF-IDF), TextRank, latent Dirichlet allocation (LDA), the Word2vec model, and attention-based bidirectional long short-term memory (BiLSTM). To be more specific, the text information on IPs in Weibo and WeChat is extracted using the TF-IDF and TextRank algorithms. Then, the probability of keywords in text and their IP topics are obtained based on the LDA and t-SNE models. Sentiment polarity and topic trends are analyzed by the Word2vec model and BiLSTM. The results show that 16 topics related to IP were identified, and most topics presented high levels of positive sentiment; the development trend lines of the two emotions are easily affected by abnormal events, and thus, show obvious fluctuation.

  • Název v anglickém jazyce

    Topic identification and sentiment trends in Weibo and WeChat content related to intellectual property in China

  • Popis výsledku anglicky

    Intense frictions in global trade have made intellectual property (IP) an important topic of public concern. Meanwhile, new media and online communities have become important platforms for the public to discuss IP issues. Mining the core topics and judging their sentiment status from the public&apos;s massive online IP data are important means for the government to formulate and evaluate IP policies, for enterprises to carry out R&amp;D and identify business opportunities. Hence, this study aims to conduct topic identification and sentiment trends in Weibo and WeChat content related to IPs in China by employing a novel ensemble method combining the term frequency inverse document frequency (TF-IDF), TextRank, latent Dirichlet allocation (LDA), the Word2vec model, and attention-based bidirectional long short-term memory (BiLSTM). To be more specific, the text information on IPs in Weibo and WeChat is extracted using the TF-IDF and TextRank algorithms. Then, the probability of keywords in text and their IP topics are obtained based on the LDA and t-SNE models. Sentiment polarity and topic trends are analyzed by the Word2vec model and BiLSTM. The results show that 16 topics related to IP were identified, and most topics presented high levels of positive sentiment; the development trend lines of the two emotions are easily affected by abnormal events, and thus, show obvious fluctuation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Technological Forecasting and Social Change

  • ISSN

    0040-1625

  • e-ISSN

    1873-5509

  • Svazek periodika

    184

  • Číslo periodika v rámci svazku

    NOVEMBER

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    20

  • Strana od-do

    "Article Number: 121980"

  • Kód UT WoS článku

    000854011400003

  • EID výsledku v databázi Scopus

    2-s2.0-85137076813