Topic identification and sentiment trends in Weibo and WeChat content related to intellectual property in China
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019423" target="_blank" >RIV/62690094:18470/22:50019423 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0040162522005017?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0040162522005017?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.techfore.2022.121980" target="_blank" >10.1016/j.techfore.2022.121980</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Topic identification and sentiment trends in Weibo and WeChat content related to intellectual property in China
Popis výsledku v původním jazyce
Intense frictions in global trade have made intellectual property (IP) an important topic of public concern. Meanwhile, new media and online communities have become important platforms for the public to discuss IP issues. Mining the core topics and judging their sentiment status from the public's massive online IP data are important means for the government to formulate and evaluate IP policies, for enterprises to carry out R&D and identify business opportunities. Hence, this study aims to conduct topic identification and sentiment trends in Weibo and WeChat content related to IPs in China by employing a novel ensemble method combining the term frequency inverse document frequency (TF-IDF), TextRank, latent Dirichlet allocation (LDA), the Word2vec model, and attention-based bidirectional long short-term memory (BiLSTM). To be more specific, the text information on IPs in Weibo and WeChat is extracted using the TF-IDF and TextRank algorithms. Then, the probability of keywords in text and their IP topics are obtained based on the LDA and t-SNE models. Sentiment polarity and topic trends are analyzed by the Word2vec model and BiLSTM. The results show that 16 topics related to IP were identified, and most topics presented high levels of positive sentiment; the development trend lines of the two emotions are easily affected by abnormal events, and thus, show obvious fluctuation.
Název v anglickém jazyce
Topic identification and sentiment trends in Weibo and WeChat content related to intellectual property in China
Popis výsledku anglicky
Intense frictions in global trade have made intellectual property (IP) an important topic of public concern. Meanwhile, new media and online communities have become important platforms for the public to discuss IP issues. Mining the core topics and judging their sentiment status from the public's massive online IP data are important means for the government to formulate and evaluate IP policies, for enterprises to carry out R&D and identify business opportunities. Hence, this study aims to conduct topic identification and sentiment trends in Weibo and WeChat content related to IPs in China by employing a novel ensemble method combining the term frequency inverse document frequency (TF-IDF), TextRank, latent Dirichlet allocation (LDA), the Word2vec model, and attention-based bidirectional long short-term memory (BiLSTM). To be more specific, the text information on IPs in Weibo and WeChat is extracted using the TF-IDF and TextRank algorithms. Then, the probability of keywords in text and their IP topics are obtained based on the LDA and t-SNE models. Sentiment polarity and topic trends are analyzed by the Word2vec model and BiLSTM. The results show that 16 topics related to IP were identified, and most topics presented high levels of positive sentiment; the development trend lines of the two emotions are easily affected by abnormal events, and thus, show obvious fluctuation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Technological Forecasting and Social Change
ISSN
0040-1625
e-ISSN
1873-5509
Svazek periodika
184
Číslo periodika v rámci svazku
NOVEMBER
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
"Article Number: 121980"
Kód UT WoS článku
000854011400003
EID výsledku v databázi Scopus
2-s2.0-85137076813