Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Possibilities of Improvement of Image Classification via GIS Tools

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63468352%3A_____%2F14%3A%230000425" target="_blank" >RIV/63468352:_____/14:#0000425 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Possibilities of Improvement of Image Classification via GIS Tools

  • Popis výsledku v původním jazyce

    The article deals with the possibilities of the enhancement of results of image classification using tools of geographic information systems (GIS). Theoretical solutions are based on the theory of rough sets. Spatial analyses in GIS are the implementation tools of the theoretical model. Improved results of image classification are achieved by filtration of added layer with clearly defined classes and also by manually editing in the necessary extent in GIS. The authors of this paper show that the filtration using more than one layer leads to an enormous increase of the complexity of the whole process with inadequate contribution of the quality of classification results. The proposed method was tested in the project of data analysis of storage of gas facilities under certain types of terrain surface in the Czech Republic (CR). This analysis was done in order to determine reproductive values of gas facilities (pipelines) and the valuation of costs which would be necessary to spend for building new networks. The authors solved this project for the GasNet, Ltd. Company which is a part of a RWE group in the Czech Republic. Input data were orthophoto with the resolution of 25 cm/pixel and selected layers of communications of Fundamental Base of Geographic Data of the CR (ZABAGED). Due to the territorial coverage with the area of 64,350 km2, these were massive tasks with data volume of 500 GB. Processing was carried out in ArcGIS 10.0 environment via special created application in Python language with support of the ESRI libraries. The results demonstrated the efficacy (effectiveness) of this process and the reducing of the error rate to 2% - 3 % was achieved over the modeled area for given purpose.

  • Název v anglickém jazyce

    Possibilities of Improvement of Image Classification via GIS Tools

  • Popis výsledku anglicky

    The article deals with the possibilities of the enhancement of results of image classification using tools of geographic information systems (GIS). Theoretical solutions are based on the theory of rough sets. Spatial analyses in GIS are the implementation tools of the theoretical model. Improved results of image classification are achieved by filtration of added layer with clearly defined classes and also by manually editing in the necessary extent in GIS. The authors of this paper show that the filtration using more than one layer leads to an enormous increase of the complexity of the whole process with inadequate contribution of the quality of classification results. The proposed method was tested in the project of data analysis of storage of gas facilities under certain types of terrain surface in the Czech Republic (CR). This analysis was done in order to determine reproductive values of gas facilities (pipelines) and the valuation of costs which would be necessary to spend for building new networks. The authors solved this project for the GasNet, Ltd. Company which is a part of a RWE group in the Czech Republic. Input data were orthophoto with the resolution of 25 cm/pixel and selected layers of communications of Fundamental Base of Geographic Data of the CR (ZABAGED). Due to the territorial coverage with the area of 64,350 km2, these were massive tasks with data volume of 500 GB. Processing was carried out in ArcGIS 10.0 environment via special created application in Python language with support of the ESRI libraries. The results demonstrated the efficacy (effectiveness) of this process and the reducing of the error rate to 2% - 3 % was achieved over the modeled area for given purpose.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    5th International Conference on Cartography and GIS

  • ISBN

  • ISSN

    1314-0604

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    96-102

  • Název nakladatele

    Bulgarian Cartographic Assosiation

  • Místo vydání

    Sofia

  • Místo konání akce

    Sofia

  • Datum konání akce

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku