Exact transformations and decompositions of nonlinear models and their applications in automatic control
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F10%3A00352932" target="_blank" >RIV/67985556:_____/10:00352932 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exact transformations and decompositions of nonlinear models and their applications in automatic control
Popis výsledku v původním jazyce
Exact transformations and decompositions of controlled dynamical systems has been intensively studied as an important part of control theory and its applications. One of the most important problems in this respect is the so-called exact feedback linearization method which enables to solve the control design for a given nonlinear system via its transformation into a simpler model, which would be at least partially linear one. In such a way it results into the decomposition of the original complex interconnected nonlinear model into a number of less complex subsystems with either simple or no connections between them. Typically, each linear part of this decomposition does not depend on the rest of the model and corresponds to some single output and single input component, while the nonlinear residuum is sufficient to be analyzed only qualitatively.
Název v anglickém jazyce
Exact transformations and decompositions of nonlinear models and their applications in automatic control
Popis výsledku anglicky
Exact transformations and decompositions of controlled dynamical systems has been intensively studied as an important part of control theory and its applications. One of the most important problems in this respect is the so-called exact feedback linearization method which enables to solve the control design for a given nonlinear system via its transformation into a simpler model, which would be at least partially linear one. In such a way it results into the decomposition of the original complex interconnected nonlinear model into a number of less complex subsystems with either simple or no connections between them. Typically, each linear part of this decomposition does not depend on the rest of the model and corresponds to some single output and single input component, while the nonlinear residuum is sufficient to be analyzed only qualitatively.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů