Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An unconditionally stable approximation of a circular flexible plate described by a fourth order partial differential equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00462241" target="_blank" >RIV/67985556:_____/16:00462241 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An unconditionally stable approximation of a circular flexible plate described by a fourth order partial differential equation

  • Popis výsledku v původním jazyce

    An unconditionally stable finite difference scheme for systems whose dynamics are described by a second-order partial differential equation is developed with use of regular hexagonal grid. The scheme is motivated by the well-known Crank-Nicolson discretization which was developed for first-order systems. The stability of the finite-difference scheme is analyzed by von Neumann’s method. Using the new scheme, a discrete in time and space model of a deformable mirror is derived as the basis for control law design. The convergence of this scheme for various values of the discretization parameters is checked by numerical simulations.

  • Název v anglickém jazyce

    An unconditionally stable approximation of a circular flexible plate described by a fourth order partial differential equation

  • Popis výsledku anglicky

    An unconditionally stable finite difference scheme for systems whose dynamics are described by a second-order partial differential equation is developed with use of regular hexagonal grid. The scheme is motivated by the well-known Crank-Nicolson discretization which was developed for first-order systems. The stability of the finite-difference scheme is analyzed by von Neumann’s method. Using the new scheme, a discrete in time and space model of a deformable mirror is derived as the basis for control law design. The convergence of this scheme for various values of the discretization parameters is checked by numerical simulations.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 21st International Conference on Methods and Models in Automation & Robotics

  • ISBN

    978-1-5090-1867-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    1039-1044

  • Název nakladatele

    IEEE

  • Místo vydání

    Międzyzdroje

  • Místo konání akce

    Amber Baltic Hotel, Międzyzdroje

  • Datum konání akce

    29. 8. 2016

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku