A note on locking materials and gradient polyconvexity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00495918" target="_blank" >RIV/67985556:_____/18:00495918 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21110/18:00324723
Výsledek na webu
<a href="http://dx.doi.org/10.1142/S0218202518500513" target="_blank" >http://dx.doi.org/10.1142/S0218202518500513</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202518500513" target="_blank" >10.1142/S0218202518500513</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A note on locking materials and gradient polyconvexity
Popis výsledku v původním jazyce
We use gradient Young measures generated by Lipschitz maps to define a relaxation of integral functionals which are allowed to attain the value +∞ and can model ideal locking in elasticity as defined by Prager in 1957. Furthermore, we show the existence of minimizers for variational problems for elastic materials with energy densities that can be expressed in terms of a function being continuous in the deformation gradient and convex in the gradient of the cofactor (and possibly also the gradient of the determinant) of the corresponding deformation gradient. We call the related energy functional gradient polyconvex. Thus, instead of considering second derivatives of the deformation gradient as in second-grade materials, only a weaker higher integrability is imposed. Although the second-order gradient of the deformation is not included in our model, gradient polyconvex functionals allow for an implicit uniform positive lower bound on the determinant of the deformation gradient on the closure of the domain representing the elastic body. Consequently, the material does not allow for extreme local compression.
Název v anglickém jazyce
A note on locking materials and gradient polyconvexity
Popis výsledku anglicky
We use gradient Young measures generated by Lipschitz maps to define a relaxation of integral functionals which are allowed to attain the value +∞ and can model ideal locking in elasticity as defined by Prager in 1957. Furthermore, we show the existence of minimizers for variational problems for elastic materials with energy densities that can be expressed in terms of a function being continuous in the deformation gradient and convex in the gradient of the cofactor (and possibly also the gradient of the determinant) of the corresponding deformation gradient. We call the related energy functional gradient polyconvex. Thus, instead of considering second derivatives of the deformation gradient as in second-grade materials, only a weaker higher integrability is imposed. Although the second-order gradient of the deformation is not included in our model, gradient polyconvex functionals allow for an implicit uniform positive lower bound on the determinant of the deformation gradient on the closure of the domain representing the elastic body. Consequently, the material does not allow for extreme local compression.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-04301S" target="_blank" >GA17-04301S: Pokročilé matematické metody pro disipativní evoluční systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
35
Strana od-do
2367-2401
Kód UT WoS článku
000449107200002
EID výsledku v databázi Scopus
2-s2.0-85052953158