Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Stochastic optimization problems with second order stochastic dominance constraints via Wasserstein metric

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00502907" target="_blank" >RIV/67985556:_____/18:00502907 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.14736/kyb-2018-6-1231" target="_blank" >http://dx.doi.org/10.14736/kyb-2018-6-1231</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14736/kyb-2018-6-1231" target="_blank" >10.14736/kyb-2018-6-1231</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Stochastic optimization problems with second order stochastic dominance constraints via Wasserstein metric

  • Popis výsledku v původním jazyce

    Optimization problems with stochastic dominance constraints are helpful to many real-life applications. We can recall e.g. problems of portfolio selection or problems connected with energy production. The above mentioned constraints are very suitable because they guarantee a solution fulfilling partial order between utility functions in a given subsystem U of the utility functions. Especially, considering U = U_1 (where U_ is a system of a non decreasing concave nonnegative utility functions) we obtain second order stochastic dominance constraints. Unfortunately it is also known that these problems are rather complicated as from the theoretical and the numerical point of view. Moreover, these problems go to semi-infinite optimization problems for which Slater's condition is not necessary fulfilled. Consequently it is suitable to modify the constraints. A question arises how to do it. The aim of the paper is to suggest one of the possibilities how to modify the original problem with an „estimation“ of a gap between the original and modified problem. To this end the stability results obtained on the base of the Wasserstein metric corresponding to L_1 norm are employed. Moreover, we mention a scenario generation and an investigation of empirical estimates. At the end attention will be paid to heavy tailed distributions.

  • Název v anglickém jazyce

    Stochastic optimization problems with second order stochastic dominance constraints via Wasserstein metric

  • Popis výsledku anglicky

    Optimization problems with stochastic dominance constraints are helpful to many real-life applications. We can recall e.g. problems of portfolio selection or problems connected with energy production. The above mentioned constraints are very suitable because they guarantee a solution fulfilling partial order between utility functions in a given subsystem U of the utility functions. Especially, considering U = U_1 (where U_ is a system of a non decreasing concave nonnegative utility functions) we obtain second order stochastic dominance constraints. Unfortunately it is also known that these problems are rather complicated as from the theoretical and the numerical point of view. Moreover, these problems go to semi-infinite optimization problems for which Slater's condition is not necessary fulfilled. Consequently it is suitable to modify the constraints. A question arises how to do it. The aim of the paper is to suggest one of the possibilities how to modify the original problem with an „estimation“ of a gap between the original and modified problem. To this end the stability results obtained on the base of the Wasserstein metric corresponding to L_1 norm are employed. Moreover, we mention a scenario generation and an investigation of empirical estimates. At the end attention will be paid to heavy tailed distributions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-02739S" target="_blank" >GA18-02739S: Stochastická optimalizace v ekonomických procesech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Kybernetika

  • ISSN

    0023-5954

  • e-ISSN

  • Svazek periodika

    54

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    16

  • Strana od-do

    1231-1246

  • Kód UT WoS článku

    000457070200010

  • EID výsledku v databázi Scopus