On typical encodings of multivariate ergodic sources
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00536977" target="_blank" >RIV/67985556:_____/20:00536977 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.kybernetika.cz/content/2020/6/1090" target="_blank" >http://www.kybernetika.cz/content/2020/6/1090</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2020-6-1090" target="_blank" >10.14736/kyb-2020-6-1090</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On typical encodings of multivariate ergodic sources
Popis výsledku v původním jazyce
We show that the typical coordinate-wise encoding of multivariate ergodic source into prescribed alphabets has the entropy profile close to the convolution of the entropy profile of the source and the modular polymatroid that is determined by the cardinalities of the output alphabets. We show that the proportion of the exceptional encodings that are not close to the convolution goes to zero doubly exponentially. The result holds for a class of multivariate sources that satisfy asymptotic equipartition property described via the mean fluctuation of the information functions. This class covers asymptotically mean stationary processes with ergodic mean, ergodic processes, irreducible Markov chains with an arbitrary initial distribution. We also proved that typical encodings yield the asymptotic equipartition property for the output variables. These asymptotic results are based on an explicit lower bound of the proportion of encodings that transform a multivariate random variable into a variable with the entropy profile close to the suitable convolution.nn
Název v anglickém jazyce
On typical encodings of multivariate ergodic sources
Popis výsledku anglicky
We show that the typical coordinate-wise encoding of multivariate ergodic source into prescribed alphabets has the entropy profile close to the convolution of the entropy profile of the source and the modular polymatroid that is determined by the cardinalities of the output alphabets. We show that the proportion of the exceptional encodings that are not close to the convolution goes to zero doubly exponentially. The result holds for a class of multivariate sources that satisfy asymptotic equipartition property described via the mean fluctuation of the information functions. This class covers asymptotically mean stationary processes with ergodic mean, ergodic processes, irreducible Markov chains with an arbitrary initial distribution. We also proved that typical encodings yield the asymptotic equipartition property for the output variables. These asymptotic results are based on an explicit lower bound of the proportion of encodings that transform a multivariate random variable into a variable with the entropy profile close to the suitable convolution.nn
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Kybernetika
ISSN
0023-5954
e-ISSN
—
Svazek periodika
56
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
21
Strana od-do
1090-1110
Kód UT WoS článku
000605763100006
EID výsledku v databázi Scopus
2-s2.0-85100203364