Bayesian Mixture Estimation without Tears
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00544577" target="_blank" >RIV/67985556:_____/21:00544577 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21260/21:00350675
Výsledek na webu
<a href="http://dx.doi.org/10.5220/0010508706410648" target="_blank" >http://dx.doi.org/10.5220/0010508706410648</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0010508706410648" target="_blank" >10.5220/0010508706410648</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian Mixture Estimation without Tears
Popis výsledku v původním jazyce
This paper aims at presenting the on-line non-iterative form of Bayesian mixture estimation. The model used is composed of a set of sub-models (components) and an estimated pointer variable that currently indicates the active component. The estimation is built on an approximated Bayes rule using weighted measured data. The weights are derived from the so called proximity of measured data entries to individual components. The basis for the generation of the weights are integrated likelihood functions with the inserted point estimates of the component parameters. One of the main advantages of the presented data analysis method is a possibility of a simple incorporation of the available prior knowledge. Simple examples with a programming code as well as results of experiments with real data are demonstrated. The main goal of this paper is to provide clear description of the Bayesian estimation method based on the approximated likelihood functions, called proximities.
Název v anglickém jazyce
Bayesian Mixture Estimation without Tears
Popis výsledku anglicky
This paper aims at presenting the on-line non-iterative form of Bayesian mixture estimation. The model used is composed of a set of sub-models (components) and an estimated pointer variable that currently indicates the active component. The estimation is built on an approximated Bayes rule using weighted measured data. The weights are derived from the so called proximity of measured data entries to individual components. The basis for the generation of the weights are integrated likelihood functions with the inserted point estimates of the component parameters. One of the main advantages of the presented data analysis method is a possibility of a simple incorporation of the available prior knowledge. Simple examples with a programming code as well as results of experiments with real data are demonstrated. The main goal of this paper is to provide clear description of the Bayesian estimation method based on the approximated likelihood functions, called proximities.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/8A19009" target="_blank" >8A19009: Arrowhead Tools for Engineering of Digitalisation Solutions</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics
ISBN
978-989-758-522-7
ISSN
2184-2809
e-ISSN
—
Počet stran výsledku
8
Strana od-do
641-648
Název nakladatele
Scitepress
Místo vydání
Setúbal
Místo konání akce
Setúbal (online)
Datum konání akce
6. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—