A feature level image fusion for Night-Vision context enhancement using Arithmetic optimization algorithm based image segmentation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00563455" target="_blank" >RIV/67985556:_____/22:00563455 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417422014129?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417422014129?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2022.118272" target="_blank" >10.1016/j.eswa.2022.118272</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A feature level image fusion for Night-Vision context enhancement using Arithmetic optimization algorithm based image segmentation
Popis výsledku v původním jazyce
Images are fused to produce a composite image by combining key characteristics of the source images in image fusion. It makes the fused image better for human vision and machine vision. A novel procedure of Infrared (IR) and Visible (Vis) image fusion is proposed in this manuscript. The main challenges of feature level image fusion are that it will introduce artifacts and noise in the fused image. To preserve the meaningful information without adding artifacts from the source input images, weight map computed from Arithmetic optimization algorithm (AOA) is used for the image fusion process. In this manuscript, feature level fusion is performed after refining the weight maps using a weighted least square optimization (WLS) technique. Through this, the derived salient object details are merged into the visual image without introducing distortion. To affirm the validity of the proposed methodology simulation results are carried for twenty-one image data sets. It is concluded from the qualitative and quantitative experimental analysis that the proposed method works well for most of the image data sets and shows better performance than certain traditional existing models.
Název v anglickém jazyce
A feature level image fusion for Night-Vision context enhancement using Arithmetic optimization algorithm based image segmentation
Popis výsledku anglicky
Images are fused to produce a composite image by combining key characteristics of the source images in image fusion. It makes the fused image better for human vision and machine vision. A novel procedure of Infrared (IR) and Visible (Vis) image fusion is proposed in this manuscript. The main challenges of feature level image fusion are that it will introduce artifacts and noise in the fused image. To preserve the meaningful information without adding artifacts from the source input images, weight map computed from Arithmetic optimization algorithm (AOA) is used for the image fusion process. In this manuscript, feature level fusion is performed after refining the weight maps using a weighted least square optimization (WLS) technique. Through this, the derived salient object details are merged into the visual image without introducing distortion. To affirm the validity of the proposed methodology simulation results are carried for twenty-one image data sets. It is concluded from the qualitative and quantitative experimental analysis that the proposed method works well for most of the image data sets and shows better performance than certain traditional existing models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems With Applications
ISSN
0957-4174
e-ISSN
1873-6793
Svazek periodika
209
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
118272
Kód UT WoS článku
000859686100008
EID výsledku v databázi Scopus
2-s2.0-85135316166