Synchronization of Multi-Agent Systems Composed of Second-Order Underactuated Agents
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00600118" target="_blank" >RIV/67985556:_____/24:00600118 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/12/21/3424" target="_blank" >https://www.mdpi.com/2227-7390/12/21/3424</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math12213424" target="_blank" >10.3390/math12213424</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Synchronization of Multi-Agent Systems Composed of Second-Order Underactuated Agents
Popis výsledku v původním jazyce
The consensus problem of a multi-agent system with nonlinear second-order underactuated agents is addressed. The essence of the approach can be outlined as follows: the output is redesigned first so that the agents attain the minimum-phase property. The second step is to apply the exact feedback linearization to the agents. This transformation divides their dynamics into a linear observable part and a non-observable part. It is shown that consensus of the linearizable parts of the agents implies consensus of the entire multi-agent system. To achieve the consensus of the original system, the inverse transformation of the exact feedback linearization is applied. However, its application causes changes in the dynamics of the multi-agent system. a way to mitigate this effect is proposed. Two examples are presented to illustrate the efficiency of the proposed synchronization algorithm. These examples demonstrate that the synchronization error decreases faster when the proposed method is applied. This holds not only for the states constituting the linearizable dynamics but also for the hidden internal dynamics.
Název v anglickém jazyce
Synchronization of Multi-Agent Systems Composed of Second-Order Underactuated Agents
Popis výsledku anglicky
The consensus problem of a multi-agent system with nonlinear second-order underactuated agents is addressed. The essence of the approach can be outlined as follows: the output is redesigned first so that the agents attain the minimum-phase property. The second step is to apply the exact feedback linearization to the agents. This transformation divides their dynamics into a linear observable part and a non-observable part. It is shown that consensus of the linearizable parts of the agents implies consensus of the entire multi-agent system. To achieve the consensus of the original system, the inverse transformation of the exact feedback linearization is applied. However, its application causes changes in the dynamics of the multi-agent system. a way to mitigate this effect is proposed. Two examples are presented to illustrate the efficiency of the proposed synchronization algorithm. These examples demonstrate that the synchronization error decreases faster when the proposed method is applied. This holds not only for the states constituting the linearizable dynamics but also for the hidden internal dynamics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
12
Číslo periodika v rámci svazku
21 - Spec. Iss. MMAAIMAS 2024
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
3424
Kód UT WoS článku
001351750900001
EID výsledku v databázi Scopus
2-s2.0-85208441589