Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Supervised Learning Errors by Radial Basis Function Neural Networks and Regularization Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F08%3A00331008" target="_blank" >RIV/67985807:_____/08:00331008 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Supervised Learning Errors by Radial Basis Function Neural Networks and Regularization Networks

  • Popis výsledku v původním jazyce

    There is a gap between the theoretical results of regularization theory and practical suitability of regularization derived networks (RN). On the other hand, radial basis function networks (RBF) that can be seen as a special case of regularization networks, have a rich selection of learning algorithms. In this work we study a relationship between RN and RBF, and show that theoretical estimates for RN hold for a concrete RBF applied on real-world data.

  • Název v anglickém jazyce

    Supervised Learning Errors by Radial Basis Function Neural Networks and Regularization Networks

  • Popis výsledku anglicky

    There is a gap between the theoretical results of regularization theory and practical suitability of regularization derived networks (RN). On the other hand, radial basis function networks (RBF) that can be seen as a special case of regularization networks, have a rich selection of learning algorithms. In this work we study a relationship between RN and RBF, and show that theoretical estimates for RN hold for a concrete RBF applied on real-world data.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F08%2F1744" target="_blank" >GA201/08/1744: Složitost perceptronových a jádrových sítí</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of Second International Conference on Future Generation Communication and Networking Symposia

  • ISBN

    978-1-4244-3430-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    IEEE Computer Society

  • Místo vydání

    Los Alamitos

  • Místo konání akce

    Hainan Island

  • Datum konání akce

    13. 12. 2008

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000270432000079