Learning Errors by Radial Basis Function Neural Networks and Regularization Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00331128" target="_blank" >RIV/67985807:_____/09:00331128 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning Errors by Radial Basis Function Neural Networks and Regularization Networks
Popis výsledku v původním jazyce
Regularization theory presents a sound framework to solving supervised learning problems. However, there is a gap between the theoretical results and practical suitability of regularization networks (RN). Radial basis function networks (RBF) that can beseen as a special case of regularization networks have a rich selection of learning algorithms. In this work we study a relationship between RN and RBF, and show that theoretical estimates for RN hold for a concrete RBF applied to real-world data, to a certain degree. This can provide several recommendations for strategies on choosing number of units in RBF network.
Název v anglickém jazyce
Learning Errors by Radial Basis Function Neural Networks and Regularization Networks
Popis výsledku anglicky
Regularization theory presents a sound framework to solving supervised learning problems. However, there is a gap between the theoretical results and practical suitability of regularization networks (RN). Radial basis function networks (RBF) that can beseen as a special case of regularization networks have a rich selection of learning algorithms. In this work we study a relationship between RN and RBF, and show that theoretical estimates for RN hold for a concrete RBF applied to real-world data, to a certain degree. This can provide several recommendations for strategies on choosing number of units in RBF network.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Grid and Distributed Computing
ISSN
2005-4262
e-ISSN
—
Svazek periodika
1
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
KR - Korejská republika
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—