Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Convergence of Inner-Iteration GMRES Methods for Rank-Deficient Least Squares Problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00438625" target="_blank" >RIV/67985807:_____/15:00438625 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1137/130946009" target="_blank" >http://dx.doi.org/10.1137/130946009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/130946009" target="_blank" >10.1137/130946009</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Convergence of Inner-Iteration GMRES Methods for Rank-Deficient Least Squares Problems

  • Popis výsledku v původním jazyce

    We develop a general convergence theory for the generalized minimal residual method preconditioned by inner iterations for solving least squares problems. The inner iterations are performed by stationary iterative methods. We also present theoretical justifications for using specific inner iterations such as the Jacobi and SOR-type methods. The theory improves previous work [K. Morikuni and K. Hayami, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1--22], particularly in the rank-deficient case. We also characterize the spectrum of the preconditioned coefficient matrix by the spectral radius of the iteration matrix for the inner iterations and give a convergence bound for the proposed methods. Finally, numerical experiments show that the proposed methods are more robust and efficient compared to previous methods for some rank-deficient problems.

  • Název v anglickém jazyce

    Convergence of Inner-Iteration GMRES Methods for Rank-Deficient Least Squares Problems

  • Popis výsledku anglicky

    We develop a general convergence theory for the generalized minimal residual method preconditioned by inner iterations for solving least squares problems. The inner iterations are performed by stationary iterative methods. We also present theoretical justifications for using specific inner iterations such as the Jacobi and SOR-type methods. The theory improves previous work [K. Morikuni and K. Hayami, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1--22], particularly in the rank-deficient case. We also characterize the spectrum of the preconditioned coefficient matrix by the spectral radius of the iteration matrix for the inner iterations and give a convergence bound for the proposed methods. Finally, numerical experiments show that the proposed methods are more robust and efficient compared to previous methods for some rank-deficient problems.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Matrix Analysis and Applications

  • ISSN

    0895-4798

  • e-ISSN

  • Svazek periodika

    36

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    26

  • Strana od-do

    225-250

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus