Parallel Evolutionary Algorithm with Interleaving Generations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00477041" target="_blank" >RIV/67985807:_____/17:00477041 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/17:10361034
Výsledek na webu
<a href="http://dx.doi.org/10.1145/3071178.3071309" target="_blank" >http://dx.doi.org/10.1145/3071178.3071309</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3071178.3071309" target="_blank" >10.1145/3071178.3071309</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parallel Evolutionary Algorithm with Interleaving Generations
Popis výsledku v původním jazyce
We present a parallel evolutionary algorithm with interleaving generations. The algorithm uses a careful analysis of genetic operators and selection in order to evaluate individuals from following generations while the current generation is still not completely evaluated. This brings significant advantages in cases where each fitness evaluation takes different amount of time, the evaluations are performed in parallel, and a traditional generational evolutionary algorithm has to wait for all evaluations to finish. The proposed algorithm provides better utilization of computational resources in these cases. Moreover, the algorithm is functionally equivalent to the generational evolutionary algorithm, and thus it does not have any evaluation time bias, which is often present in asynchronous evolutionary algorithms. The proposed algorithm is tested in a series of simple experiments and its effectiveness is compared to the effectiveness of the generational evolutionary algorithm in terms of CPU utilization.
Název v anglickém jazyce
Parallel Evolutionary Algorithm with Interleaving Generations
Popis výsledku anglicky
We present a parallel evolutionary algorithm with interleaving generations. The algorithm uses a careful analysis of genetic operators and selection in order to evaluate individuals from following generations while the current generation is still not completely evaluated. This brings significant advantages in cases where each fitness evaluation takes different amount of time, the evaluations are performed in parallel, and a traditional generational evolutionary algorithm has to wait for all evaluations to finish. The proposed algorithm provides better utilization of computational resources in these cases. Moreover, the algorithm is functionally equivalent to the generational evolutionary algorithm, and thus it does not have any evaluation time bias, which is often present in asynchronous evolutionary algorithms. The proposed algorithm is tested in a series of simple experiments and its effectiveness is compared to the effectiveness of the generational evolutionary algorithm in terms of CPU utilization.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-19877S" target="_blank" >GA15-19877S: Automatické modelování znalostí a plánů pro autonomní roboty</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
GECCO 2017. Proceedings of the 2017 Genetic and Evolutionary Computation Conference
ISBN
978-1-4503-4920-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
865-872
Název nakladatele
ACM
Místo vydání
New York
Místo konání akce
Berlin
Datum konání akce
15. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—