Colourings without monochromatic disjoint pairs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00484498" target="_blank" >RIV/67985807:_____/18:00484498 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ejc.2017.12.006" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2017.12.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2017.12.006" target="_blank" >10.1016/j.ejc.2017.12.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Colourings without monochromatic disjoint pairs
Popis výsledku v původním jazyce
The typical extremal problem asks how large a structure can be without containing a forbidden substructure. The Erdős–Rothschild problem, introduced in 1974 by Erdős and Rothschild in the context of extremal graph theory, is a coloured extension, asking for the maximum number of colourings a structure can have that avoid monochromatic copies of the forbidden substructure. The celebrated Erdős–Ko–Rado theorem is a fundamental result in extremal set theory, bounding the size of set families without a pair of disjoint sets, and has since been extended to several other discrete settings. The Erdős–Rothschild extensions of these theorems have also been studied in recent years, most notably by Hoppen, Koyakayawa and Lefmann for set families, and Hoppen, Lefmann and Odermann for vector spaces. In this paper we present a unified approach to the Erdős-Rothschild problem for intersecting structures, which allows us to extend the previous results, often with sharp bounds on the size of the ground set in terms of the other parameters. In many cases we also characterise which families of vector spaces asymptotically maximise the number of Erdős–Rothschild colourings, thus addressing a conjecture of Hoppen, Lefmann and Odermann.
Název v anglickém jazyce
Colourings without monochromatic disjoint pairs
Popis výsledku anglicky
The typical extremal problem asks how large a structure can be without containing a forbidden substructure. The Erdős–Rothschild problem, introduced in 1974 by Erdős and Rothschild in the context of extremal graph theory, is a coloured extension, asking for the maximum number of colourings a structure can have that avoid monochromatic copies of the forbidden substructure. The celebrated Erdős–Ko–Rado theorem is a fundamental result in extremal set theory, bounding the size of set families without a pair of disjoint sets, and has since been extended to several other discrete settings. The Erdős–Rothschild extensions of these theorems have also been studied in recent years, most notably by Hoppen, Koyakayawa and Lefmann for set families, and Hoppen, Lefmann and Odermann for vector spaces. In this paper we present a unified approach to the Erdős-Rothschild problem for intersecting structures, which allows us to extend the previous results, often with sharp bounds on the size of the ground set in terms of the other parameters. In many cases we also characterise which families of vector spaces asymptotically maximise the number of Erdős–Rothschild colourings, thus addressing a conjecture of Hoppen, Lefmann and Odermann.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ16-07822Y" target="_blank" >GJ16-07822Y: Extremální teorie grafů a aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Svazek periodika
70
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
26
Strana od-do
99-124
Kód UT WoS článku
000430902200007
EID výsledku v databázi Scopus
2-s2.0-85044674911