PPP-completeness and extremal combinatorics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00569857" target="_blank" >RIV/67985840:_____/23:00569857 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10467107
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.ITCS.2023.22" target="_blank" >https://doi.org/10.4230/LIPIcs.ITCS.2023.22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ITCS.2023.22" target="_blank" >10.4230/LIPIcs.ITCS.2023.22</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PPP-completeness and extremal combinatorics
Popis výsledku v původním jazyce
Many classical theorems in combinatorics establish the emergence of substructures within sufficiently large collections of objects. Well-known examples are Ramsey’s theorem on monochromatic subgraphs and the Erdős-Rado sunflower lemma. Implicit versions of the corresponding total search problems are known to be PWPP-hard under randomized reductions in the case of Ramsey’s theorem and PWPP-hard in the case of the sunflower lemma, here 'implicit' means that the collection is represented by a poly-sized circuit inducing an exponentially large number of objects.nWe show that several other well-known theorems from extremal combinatorics - including Erdős-Ko-Rado, Sperner, and Cayley’s formula – give rise to complete problems for PWPP and PPP. This is in contrast to the Ramsey and Erdős-Rado problems, for which establishing inclusion in PWPP has remained elusive. Besides significantly expanding the set of problems that are complete for PWPP and PPP, our work identifies some key properties of combinatorial proofs of existence that can give rise to completeness for these classes.nOur completeness results rely on efficient encodings for which finding collisions allows extracting the desired substructure. These encodings are made possible by the tightness of the bounds for the problems at hand (tighter than what is known for Ramsey’s theorem and the sunflower lemma). Previous techniques for proving bounds in TFNP invariably made use of structured algorithms. Such algorithms are not known to exist for the theorems considered in this work, as their proofs 'from the book' are non-constructive.
Název v anglickém jazyce
PPP-completeness and extremal combinatorics
Popis výsledku anglicky
Many classical theorems in combinatorics establish the emergence of substructures within sufficiently large collections of objects. Well-known examples are Ramsey’s theorem on monochromatic subgraphs and the Erdős-Rado sunflower lemma. Implicit versions of the corresponding total search problems are known to be PWPP-hard under randomized reductions in the case of Ramsey’s theorem and PWPP-hard in the case of the sunflower lemma, here 'implicit' means that the collection is represented by a poly-sized circuit inducing an exponentially large number of objects.nWe show that several other well-known theorems from extremal combinatorics - including Erdős-Ko-Rado, Sperner, and Cayley’s formula – give rise to complete problems for PWPP and PPP. This is in contrast to the Ramsey and Erdős-Rado problems, for which establishing inclusion in PWPP has remained elusive. Besides significantly expanding the set of problems that are complete for PWPP and PPP, our work identifies some key properties of combinatorial proofs of existence that can give rise to completeness for these classes.nOur completeness results rely on efficient encodings for which finding collisions allows extracting the desired substructure. These encodings are made possible by the tightness of the bounds for the problems at hand (tighter than what is known for Ramsey’s theorem and the sunflower lemma). Previous techniques for proving bounds in TFNP invariably made use of structured algorithms. Such algorithms are not known to exist for the theorems considered in this work, as their proofs 'from the book' are non-constructive.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
14th Innovations in Theoretical Computer Science Conference (ITCS 2023)
ISBN
978-3-95977-263-1
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
20
Strana od-do
22
Název nakladatele
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl
Místo konání akce
Cambridge, Massachusetts
Datum konání akce
10. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—