Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

PPP-completeness and extremal combinatorics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00569857" target="_blank" >RIV/67985840:_____/23:00569857 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/23:10467107

  • Výsledek na webu

    <a href="https://doi.org/10.4230/LIPIcs.ITCS.2023.22" target="_blank" >https://doi.org/10.4230/LIPIcs.ITCS.2023.22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ITCS.2023.22" target="_blank" >10.4230/LIPIcs.ITCS.2023.22</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    PPP-completeness and extremal combinatorics

  • Popis výsledku v původním jazyce

    Many classical theorems in combinatorics establish the emergence of substructures within sufficiently large collections of objects. Well-known examples are Ramsey’s theorem on monochromatic subgraphs and the Erdős-Rado sunflower lemma. Implicit versions of the corresponding total search problems are known to be PWPP-hard under randomized reductions in the case of Ramsey’s theorem and PWPP-hard in the case of the sunflower lemma, here 'implicit' means that the collection is represented by a poly-sized circuit inducing an exponentially large number of objects.nWe show that several other well-known theorems from extremal combinatorics - including Erdős-Ko-Rado, Sperner, and Cayley’s formula – give rise to complete problems for PWPP and PPP. This is in contrast to the Ramsey and Erdős-Rado problems, for which establishing inclusion in PWPP has remained elusive. Besides significantly expanding the set of problems that are complete for PWPP and PPP, our work identifies some key properties of combinatorial proofs of existence that can give rise to completeness for these classes.nOur completeness results rely on efficient encodings for which finding collisions allows extracting the desired substructure. These encodings are made possible by the tightness of the bounds for the problems at hand (tighter than what is known for Ramsey’s theorem and the sunflower lemma). Previous techniques for proving bounds in TFNP invariably made use of structured algorithms. Such algorithms are not known to exist for the theorems considered in this work, as their proofs 'from the book' are non-constructive.

  • Název v anglickém jazyce

    PPP-completeness and extremal combinatorics

  • Popis výsledku anglicky

    Many classical theorems in combinatorics establish the emergence of substructures within sufficiently large collections of objects. Well-known examples are Ramsey’s theorem on monochromatic subgraphs and the Erdős-Rado sunflower lemma. Implicit versions of the corresponding total search problems are known to be PWPP-hard under randomized reductions in the case of Ramsey’s theorem and PWPP-hard in the case of the sunflower lemma, here 'implicit' means that the collection is represented by a poly-sized circuit inducing an exponentially large number of objects.nWe show that several other well-known theorems from extremal combinatorics - including Erdős-Ko-Rado, Sperner, and Cayley’s formula – give rise to complete problems for PWPP and PPP. This is in contrast to the Ramsey and Erdős-Rado problems, for which establishing inclusion in PWPP has remained elusive. Besides significantly expanding the set of problems that are complete for PWPP and PPP, our work identifies some key properties of combinatorial proofs of existence that can give rise to completeness for these classes.nOur completeness results rely on efficient encodings for which finding collisions allows extracting the desired substructure. These encodings are made possible by the tightness of the bounds for the problems at hand (tighter than what is known for Ramsey’s theorem and the sunflower lemma). Previous techniques for proving bounds in TFNP invariably made use of structured algorithms. Such algorithms are not known to exist for the theorems considered in this work, as their proofs 'from the book' are non-constructive.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    14th Innovations in Theoretical Computer Science Conference (ITCS 2023)

  • ISBN

    978-3-95977-263-1

  • ISSN

    1868-8969

  • e-ISSN

  • Počet stran výsledku

    20

  • Strana od-do

    22

  • Název nakladatele

    Schloss Dagstuhl, Leibniz-Zentrum für Informatik

  • Místo vydání

    Dagstuhl

  • Místo konání akce

    Cambridge, Massachusetts

  • Datum konání akce

    10. 1. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku