Semisupervised Segmentation of UHD Video
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00494104" target="_blank" >RIV/67985807:_____/18:00494104 - isvavai.cz</a>
Výsledek na webu
<a href="http://ceur-ws.org/Vol-2203/100.pdf" target="_blank" >http://ceur-ws.org/Vol-2203/100.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semisupervised Segmentation of UHD Video
Popis výsledku v původním jazyce
One of the key preprocessing tasks in information retrieveal from video is the segmentation of the scene, primarily its segmentation into foreground objects and the background. This is actually a classification task, but with the specific property that it is very time consuming and costly to obtain human-labelled training data for classifier training. That suggests to use semisupervised classifiers to this end. The presented work in progress reports the investigation of semisupervised classification methods based on cluster regularization and on fuzzy c-means in connection with the foreground / background segmentation task. To classify as many video frames as possible using only a single human-based frame, the semisupervised classification is combined with a frequently used keypoint detector based on a combination of a corner detection method with a visual descriptor method. The paper experimentally compares both methods, and for the first of them, also classifiers with different delays between the human-labelled video frame and classifier training.
Název v anglickém jazyce
Semisupervised Segmentation of UHD Video
Popis výsledku anglicky
One of the key preprocessing tasks in information retrieveal from video is the segmentation of the scene, primarily its segmentation into foreground objects and the background. This is actually a classification task, but with the specific property that it is very time consuming and costly to obtain human-labelled training data for classifier training. That suggests to use semisupervised classifiers to this end. The presented work in progress reports the investigation of semisupervised classification methods based on cluster regularization and on fuzzy c-means in connection with the foreground / background segmentation task. To classify as many video frames as possible using only a single human-based frame, the semisupervised classification is combined with a frequently used keypoint detector based on a combination of a corner detection method with a visual descriptor method. The paper experimentally compares both methods, and for the first of them, also classifiers with different delays between the human-labelled video frame and classifier training.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ITAT 2018: Information Technologies – Applications and Theory. Proceedings of the 18th conference ITAT 2018
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
8
Strana od-do
100-107
Název nakladatele
Technical University & CreateSpace Independent Publishing Platform
Místo vydání
Aachen
Místo konání akce
Plejsy
Datum konání akce
21. 9. 2018
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—