Semisupervised segmentation of UHD video
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00324673" target="_blank" >RIV/68407700:21240/18:00324673 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semisupervised segmentation of UHD video
Popis výsledku v původním jazyce
One of the key preprocessing tasks in informa- tion retrieveal from video is the segmentation of the scene, primarily its segmentation into foreground objects and the background. This is actually a classification task, but with the specific property that it is very time consuming and costly to obtain human-labelled training data for classifier training. That suggests to use semisupervised classifiers to this end. The presented work in progress reports the inves- tigation of semisupervised classification methods based on cluster regularization and on fuzzy c-means in connection with the foreground / background segmentation task. To classify as many video frames as possible using only a single human-based frame, the semisupervised classifica- tion is combined with a frequently used keypoint detec- tor based on a combination of a corner detection method with a visual descriptor method. The paper experimentally compares both methods, and for the first of them, also clas- sifiers with different delays between the human-labelled video frame and classifier training.
Název v anglickém jazyce
Semisupervised segmentation of UHD video
Popis výsledku anglicky
One of the key preprocessing tasks in informa- tion retrieveal from video is the segmentation of the scene, primarily its segmentation into foreground objects and the background. This is actually a classification task, but with the specific property that it is very time consuming and costly to obtain human-labelled training data for classifier training. That suggests to use semisupervised classifiers to this end. The presented work in progress reports the inves- tigation of semisupervised classification methods based on cluster regularization and on fuzzy c-means in connection with the foreground / background segmentation task. To classify as many video frames as possible using only a single human-based frame, the semisupervised classifica- tion is combined with a frequently used keypoint detec- tor based on a combination of a corner detection method with a visual descriptor method. The paper experimentally compares both methods, and for the first of them, also clas- sifiers with different delays between the human-labelled video frame and classifier training.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 18th Conference Information Technologies - Applications and Theory (ITAT 2018)
ISBN
9781727267198
ISSN
—
e-ISSN
1613-0073
Počet stran výsledku
8
Strana od-do
100-107
Název nakladatele
CEUR Workshop Proceedings
Místo vydání
Aachen
Místo konání akce
Krompachy
Datum konání akce
21. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—