Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Superkernels for RBF Networks Initialization (Short Paper)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00494463" target="_blank" >RIV/67985807:_____/18:00494463 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/content/pdf/bbm%3A978-3-030-01421-6%2F1.pdf" target="_blank" >https://link.springer.com/content/pdf/bbm%3A978-3-030-01421-6%2F1.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Superkernels for RBF Networks Initialization (Short Paper)

  • Popis výsledku v původním jazyce

    One of the basic tasks solved using artificial neural networks is the regression task. In its canonical form, one seeks for adjusting network’s parameters so that its response on input training data fits the desired outputs reasonably well. Training data {xi, yi}n i=1, n ∈ N consists of points from Rd+1 Euclidean space, i.e., xi ∈ Rd, yi ∈ R. The quality of the fit is typically measured in terms of the mean integrated squared error (MISE). Various regularization techniques are considered to prevent from overfitting. Optimal setting of parameters can be specified analytically in the linear model (linear computational units), however, for the nonlinear units, the network’s parameters are set using different variants of stochastic optimization [1].

  • Název v anglickém jazyce

    Superkernels for RBF Networks Initialization (Short Paper)

  • Popis výsledku anglicky

    One of the basic tasks solved using artificial neural networks is the regression task. In its canonical form, one seeks for adjusting network’s parameters so that its response on input training data fits the desired outputs reasonably well. Training data {xi, yi}n i=1, n ∈ N consists of points from Rd+1 Euclidean space, i.e., xi ∈ Rd, yi ∈ R. The quality of the fit is typically measured in terms of the mean integrated squared error (MISE). Various regularization techniques are considered to prevent from overfitting. Optimal setting of parameters can be specified analytically in the linear model (linear computational units), however, for the nonlinear units, the network’s parameters are set using different variants of stochastic optimization [1].

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-23827S" target="_blank" >GA18-23827S: Schopnosti a omezení mělkých a hlubokých sítí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Artificial Neural Networks and Machine Learning – ICANN 2018. Proceedings, Part II

  • ISBN

    978-3-030-01420-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    3

  • Strana od-do

    621-623

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Rhodes

  • Datum konání akce

    4. 10. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku