Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Projection inequalities for antichains

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00532203" target="_blank" >RIV/67985840:_____/20:00532203 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s11856-020-2013-0" target="_blank" >https://doi.org/10.1007/s11856-020-2013-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11856-020-2013-0" target="_blank" >10.1007/s11856-020-2013-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Projection inequalities for antichains

  • Popis výsledku v původním jazyce

    Let n be an integer with n ≥ 2. A set A ⊆ ℝn is called an antichain (resp. weak antichain) if it does not contain two distinct elements x = (x1, …, xn) and y = (y1, …, yn) satisfying xi ≤ yi (resp. xi < yi) for all i ∈ {1, …, n}. We show that the Hausdorff dimension of a weak antichain A in the n-dimensional unit cube [0, 1]n is at most n − 1 and that the (n − 1)-dimensional Hausdorff measure of A is at most n, which are the best possible bounds. This result is derived as a corollary of the following projection inequality, which may be of independent interest: The (n −1)- dimensional Hausdorff measure of a (weak) antichain A ⊆ [0, 1]n cannot exceed the sum of the (n − 1)-dimensional Hausdorff measures of the n orthogonal projections of A onto the facets of the unit n-cube containing the origin. For the proof of this result we establish a discrete variant of the projection inequality applicable to weak antichains in ℤn and combine it with ideas from geometric measure theory.

  • Název v anglickém jazyce

    Projection inequalities for antichains

  • Popis výsledku anglicky

    Let n be an integer with n ≥ 2. A set A ⊆ ℝn is called an antichain (resp. weak antichain) if it does not contain two distinct elements x = (x1, …, xn) and y = (y1, …, yn) satisfying xi ≤ yi (resp. xi < yi) for all i ∈ {1, …, n}. We show that the Hausdorff dimension of a weak antichain A in the n-dimensional unit cube [0, 1]n is at most n − 1 and that the (n − 1)-dimensional Hausdorff measure of A is at most n, which are the best possible bounds. This result is derived as a corollary of the following projection inequality, which may be of independent interest: The (n −1)- dimensional Hausdorff measure of a (weak) antichain A ⊆ [0, 1]n cannot exceed the sum of the (n − 1)-dimensional Hausdorff measures of the n orthogonal projections of A onto the facets of the unit n-cube containing the origin. For the proof of this result we establish a discrete variant of the projection inequality applicable to weak antichains in ℤn and combine it with ideas from geometric measure theory.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ18-01472Y" target="_blank" >GJ18-01472Y: Limity grafů a nehomogenní náhodné grafy</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Israel Journal of Mathematics

  • ISSN

    0021-2172

  • e-ISSN

  • Svazek periodika

    238

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    IL - Stát Izrael

  • Počet stran výsledku

    30

  • Strana od-do

    61-90

  • Kód UT WoS článku

    000534408400006

  • EID výsledku v databázi Scopus

    2-s2.0-85085371997