Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The de Bruijn-Erdos theorem from a Hausdorff measure point of view

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00511319" target="_blank" >RIV/67985840:_____/19:00511319 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s10474-019-00992-9" target="_blank" >http://dx.doi.org/10.1007/s10474-019-00992-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10474-019-00992-9" target="_blank" >10.1007/s10474-019-00992-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The de Bruijn-Erdos theorem from a Hausdorff measure point of view

  • Popis výsledku v původním jazyce

    Motivated by a well-known result in extremal set theory, due to Nicolaas Govert de Bruijn and Paul Erdős, we consider curves in the unit n-cube [0 , 1] n of the form A= { (x, f1(x) , … , fn - 2(x) , α) : x∈ [0 , 1] } , where α is a fixed real number in [0,1] and f1, … , fn - 2 are injective measurable functions from [0,1] to [0,1]. We refer to such a curve A as an n-de Bruijn–Erdős-set. Under the additional assumption that all functions fi, i= 1 , … , n- 2 , are piecewise monotone, we show that the Hausdorff dimension of A is at most 1 as well as that its 1-dimensional Hausdorff measure is at most n-1. Moreover, via a walk along devil’s staircases, we construct a piecewise monotone n-de Bruijn–Erdős-set whose 1-dimensional Hausdorff measure equals n-1.

  • Název v anglickém jazyce

    The de Bruijn-Erdos theorem from a Hausdorff measure point of view

  • Popis výsledku anglicky

    Motivated by a well-known result in extremal set theory, due to Nicolaas Govert de Bruijn and Paul Erdős, we consider curves in the unit n-cube [0 , 1] n of the form A= { (x, f1(x) , … , fn - 2(x) , α) : x∈ [0 , 1] } , where α is a fixed real number in [0,1] and f1, … , fn - 2 are injective measurable functions from [0,1] to [0,1]. We refer to such a curve A as an n-de Bruijn–Erdős-set. Under the additional assumption that all functions fi, i= 1 , … , n- 2 , are piecewise monotone, we show that the Hausdorff dimension of A is at most 1 as well as that its 1-dimensional Hausdorff measure is at most n-1. Moreover, via a walk along devil’s staircases, we construct a piecewise monotone n-de Bruijn–Erdős-set whose 1-dimensional Hausdorff measure equals n-1.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Mathematica Hungarica

  • ISSN

    0236-5294

  • e-ISSN

  • Svazek periodika

    159

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    HU - Maďarsko

  • Počet stran výsledku

    14

  • Strana od-do

    400-413

  • Kód UT WoS článku

    000501828900004

  • EID výsledku v databázi Scopus

    2-s2.0-85074095413