Modeling the Prediction of Students' Success in the Context of Small Universities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00503460" target="_blank" >RIV/67985807:_____/18:00503460 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.21125/iceri.2018.1398" target="_blank" >http://dx.doi.org/10.21125/iceri.2018.1398</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21125/iceri.2018.1398" target="_blank" >10.21125/iceri.2018.1398</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling the Prediction of Students' Success in the Context of Small Universities
Popis výsledku v původním jazyce
The prediction of the success of college students becomes one of the most important but at the same time very demanding themes of university research. Early detection of students at risk of failure is of great importance both for students themselves and for universities that seek to reduce students' failure in courses leading to their early school leaving. Researchers in this field involve methods from the field of classification and regression algorithms or probability models. Frequent interest of researchers is the orientation in the large amount of data currently available to universities through datamining methods. The aim of this paper is to find a method for predict the success of students in the environment of small universities. In this environment, we encounter mainly the problem of the low number of students associated with a small range of the group. This is a case where commonly used methods fail and it is necessary to look for specific approaches that would allow predictions on such limited data. On the other hand, a small number of students give these universities a great advantage in the form of a very effective intervention. Finding suitable methods for modeling student success is therefore very beneficial in this environment.
Název v anglickém jazyce
Modeling the Prediction of Students' Success in the Context of Small Universities
Popis výsledku anglicky
The prediction of the success of college students becomes one of the most important but at the same time very demanding themes of university research. Early detection of students at risk of failure is of great importance both for students themselves and for universities that seek to reduce students' failure in courses leading to their early school leaving. Researchers in this field involve methods from the field of classification and regression algorithms or probability models. Frequent interest of researchers is the orientation in the large amount of data currently available to universities through datamining methods. The aim of this paper is to find a method for predict the success of students in the environment of small universities. In this environment, we encounter mainly the problem of the low number of students associated with a small range of the group. This is a case where commonly used methods fail and it is necessary to look for specific approaches that would allow predictions on such limited data. On the other hand, a small number of students give these universities a great advantage in the form of a very effective intervention. Finding suitable methods for modeling student success is therefore very beneficial in this environment.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICERI 2018 Proceedings
ISBN
978-84-09-05948-5
ISSN
2340-1095
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1791-1800
Název nakladatele
IATED Academy
Místo vydání
Seville
Místo konání akce
Seville
Datum konání akce
12. 11. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000562759301131