Cause I'm a Genial Imprecise Point: Outlier Detection for Uncertain Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00534694" target="_blank" >RIV/67985807:_____/21:00534694 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-67899-9_13" target="_blank" >http://dx.doi.org/10.1007/978-3-030-67899-9_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-67899-9_13" target="_blank" >10.1007/978-3-030-67899-9_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cause I'm a Genial Imprecise Point: Outlier Detection for Uncertain Data
Popis výsledku v původním jazyce
In this paper, we introduce the outlier detection problem in a set of uncertain points. We study two variants of the problems based upon the definition of the outlier. For a given positive integer k(<n) and a set R of n regions as the imprecise points, the first type of the outlier detection problem that we study is to locate n−k points on distinct regions, such that the size of the smallest axis-aligned bounding box (AABB), the diameter or the smallest enclosing circle (SEC) of the resulting points gets minimized. The uncertainty regions we study are squares or disks, and the excluded k regions are considered as outliers. We also study the covering versions in which the objectives of the SEC and the AABB problems are to find the smallest circle or axis-aligned bounding box, respectively, that covers the area of at least n−k regions. In the second-type of outliers, the outliers are those k regions that mostly reduce the uncertainty-induced gap between the lower bound and the upper bound on the size of the output. We give polynomial time algorithms for several variants of the mentioned problems, ranging in running time from O(nlogn) to O(n5.5logn) .
Název v anglickém jazyce
Cause I'm a Genial Imprecise Point: Outlier Detection for Uncertain Data
Popis výsledku anglicky
In this paper, we introduce the outlier detection problem in a set of uncertain points. We study two variants of the problems based upon the definition of the outlier. For a given positive integer k(<n) and a set R of n regions as the imprecise points, the first type of the outlier detection problem that we study is to locate n−k points on distinct regions, such that the size of the smallest axis-aligned bounding box (AABB), the diameter or the smallest enclosing circle (SEC) of the resulting points gets minimized. The uncertainty regions we study are squares or disks, and the excluded k regions are considered as outliers. We also study the covering versions in which the objectives of the SEC and the AABB problems are to find the smallest circle or axis-aligned bounding box, respectively, that covers the area of at least n−k regions. In the second-type of outliers, the outliers are those k regions that mostly reduce the uncertainty-induced gap between the lower bound and the upper bound on the size of the output. We give polynomial time algorithms for several variants of the mentioned problems, ranging in running time from O(nlogn) to O(n5.5logn) .
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-06792Y" target="_blank" >GJ19-06792Y: Strukturální vlastnosti viditelnosti terénů a Voroného diagramů nejvzdálenější barvy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Algorithms and Discrete Applied Mathematics
ISBN
978-3-030-67898-2
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
14
Strana od-do
165-178
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Rupnagar
Datum konání akce
11. 2. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—