Clustering Geometrically-Modeled Points in the Aggregated Uncertainty Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00555605" target="_blank" >RIV/67985807:_____/21:00555605 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/FI-2021-2097" target="_blank" >http://dx.doi.org/10.3233/FI-2021-2097</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FI-2021-2097" target="_blank" >10.3233/FI-2021-2097</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Clustering Geometrically-Modeled Points in the Aggregated Uncertainty Model
Popis výsledku v původním jazyce
The k-center problem is to choose a subset of size k from a set of n points such that the maximum distance from each point to its nearest center is minimized. Let Q = {Q1,... , Qn} be a set of polygons or segments in the region-based uncertainty model, in which each Qi is an uncertain point, where the exact locations of the points in Qi are unknown. The geometric objects such as segments and polygons can be models of a point set. We define the uncertain version of the k-center problem as a generalization in which the objective is to find k points from Q to cover the remaining regions of Q with minimum or maximum radius of the cluster to cover at least one or all exact instances of each Qi, respectively. We modify the region-based model to allow multiple points to be chosen from a region, and call the resulting model the aggregated uncertainty model. All these problems contain the point version as a special case, so they are all NP-hard with a lower bound 1.822 for the approximation factor. We give approximation algorithms for uncertain k-center of a set of segments and polygons. We also have implemented some of our algorithms on a data-set to show our theoretical performance guarantees can be achieved in practice.
Název v anglickém jazyce
Clustering Geometrically-Modeled Points in the Aggregated Uncertainty Model
Popis výsledku anglicky
The k-center problem is to choose a subset of size k from a set of n points such that the maximum distance from each point to its nearest center is minimized. Let Q = {Q1,... , Qn} be a set of polygons or segments in the region-based uncertainty model, in which each Qi is an uncertain point, where the exact locations of the points in Qi are unknown. The geometric objects such as segments and polygons can be models of a point set. We define the uncertain version of the k-center problem as a generalization in which the objective is to find k points from Q to cover the remaining regions of Q with minimum or maximum radius of the cluster to cover at least one or all exact instances of each Qi, respectively. We modify the region-based model to allow multiple points to be chosen from a region, and call the resulting model the aggregated uncertainty model. All these problems contain the point version as a special case, so they are all NP-hard with a lower bound 1.822 for the approximation factor. We give approximation algorithms for uncertain k-center of a set of segments and polygons. We also have implemented some of our algorithms on a data-set to show our theoretical performance guarantees can be achieved in practice.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-06792Y" target="_blank" >GJ19-06792Y: Strukturální vlastnosti viditelnosti terénů a Voroného diagramů nejvzdálenější barvy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fundamenta Informaticae
ISSN
0169-2968
e-ISSN
1875-8681
Svazek periodika
184
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
27
Strana od-do
205-231
Kód UT WoS článku
000768541900002
EID výsledku v databázi Scopus
2-s2.0-85125177114