On the k-colored Rainbow Sets in Fixed Dimensions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00550972" target="_blank" >RIV/67985807:_____/21:00550972 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-92681-6_46" target="_blank" >http://dx.doi.org/10.1007/978-3-030-92681-6_46</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-92681-6_46" target="_blank" >10.1007/978-3-030-92681-6_46</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the k-colored Rainbow Sets in Fixed Dimensions
Popis výsledku v původním jazyce
In this paper, we introduce a variant of the minimum diameter color spanning set (MDCSS) problem. Let P be a set of n points of m colors in Rd . For a given k, our objective is to find a set with k points of different colors that admits the minimum possible diameter. Such a set is called a k-rainbow set. This problem has applications in database queries, mostly composed by weighted points (i.e., a positive value is assigned to each point as its weight), and seeking a maximum weight k-rainbow set. We first assume the points have equal weight and design an FPT algorithm, which we generalize to the weighted version. We also solve the decision and the enumeration version of the problem by introducing a reduction to all maximal independent sets of a bipartite graph. We also introduce a 1.154-approximation algorithm for this problem and a 2.236-approximation for the enumeration version, and we perform some experimental studies on a real data-set, as well as providing several analyses of the data-set based on the outputs of our algorithm. Our exact algorithms and the approximation algorithm for the enumeration problem have a complexity being near-linear to n in R2 .
Název v anglickém jazyce
On the k-colored Rainbow Sets in Fixed Dimensions
Popis výsledku anglicky
In this paper, we introduce a variant of the minimum diameter color spanning set (MDCSS) problem. Let P be a set of n points of m colors in Rd . For a given k, our objective is to find a set with k points of different colors that admits the minimum possible diameter. Such a set is called a k-rainbow set. This problem has applications in database queries, mostly composed by weighted points (i.e., a positive value is assigned to each point as its weight), and seeking a maximum weight k-rainbow set. We first assume the points have equal weight and design an FPT algorithm, which we generalize to the weighted version. We also solve the decision and the enumeration version of the problem by introducing a reduction to all maximal independent sets of a bipartite graph. We also introduce a 1.154-approximation algorithm for this problem and a 2.236-approximation for the enumeration version, and we perform some experimental studies on a real data-set, as well as providing several analyses of the data-set based on the outputs of our algorithm. Our exact algorithms and the approximation algorithm for the enumeration problem have a complexity being near-linear to n in R2 .
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-06792Y" target="_blank" >GJ19-06792Y: Strukturální vlastnosti viditelnosti terénů a Voroného diagramů nejvzdálenější barvy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Combinatorial Optimization and Applications: 15th International Conference, COCOA 2021, Tianjin, China, December 17–19, 2021, Proceedings
ISBN
978-3-030-92680-9
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
15
Strana od-do
587-601
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Tianjin
Datum konání akce
17. 12. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—