Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sampling and sparsification for approximating the packedness of trajectories and detecting gatherings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00553671" target="_blank" >RIV/67985807:_____/23:00553671 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s41060-021-00301-0" target="_blank" >http://dx.doi.org/10.1007/s41060-021-00301-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s41060-021-00301-0" target="_blank" >10.1007/s41060-021-00301-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sampling and sparsification for approximating the packedness of trajectories and detecting gatherings

  • Popis výsledku v původním jazyce

    Packedness is a measure defined for curves as the ratio of maximum curve length inside any disk divided by its radius. Sparsification allows us to reduce the number of candidate disks for maximum packedness to a polynomial amount in terms of the number of vertices of the polygonal curve. This gives an exact algorithm for computing packedness. We prove that using a fat shape, such as a square, instead of a disk gives a constant factor approximation for packedness. Further sparsification using well-separated pair decomposition improves the time complexity at the cost of losing some accuracy. By adjusting the ratio of the separation factor and the size of the query, we improve the approximation factor of the existing algorithm for packedness using square queries. Our experiments show that uniform sampling works well for finding the average packedness of trajectories with almost constant speed. The empirical results confirm that the sparsification method approximates the maximum packedness for arbitrary polygonal curves. In big data models such as massively parallel computations, both sampling and sparsification are efficient and take a constant number of rounds. Most existing algorithms use line-sweeping which is sequential in nature. Also, we design two data-structures for computing the length of the curve inside a query shape: an exact data-structure for disks called hierarchical aggregated queries and an approximate data-structure for a given set of square queries. Using our modified segment tree, we achieve a near-linear time approximation algorithm.

  • Název v anglickém jazyce

    Sampling and sparsification for approximating the packedness of trajectories and detecting gatherings

  • Popis výsledku anglicky

    Packedness is a measure defined for curves as the ratio of maximum curve length inside any disk divided by its radius. Sparsification allows us to reduce the number of candidate disks for maximum packedness to a polynomial amount in terms of the number of vertices of the polygonal curve. This gives an exact algorithm for computing packedness. We prove that using a fat shape, such as a square, instead of a disk gives a constant factor approximation for packedness. Further sparsification using well-separated pair decomposition improves the time complexity at the cost of losing some accuracy. By adjusting the ratio of the separation factor and the size of the query, we improve the approximation factor of the existing algorithm for packedness using square queries. Our experiments show that uniform sampling works well for finding the average packedness of trajectories with almost constant speed. The empirical results confirm that the sparsification method approximates the maximum packedness for arbitrary polygonal curves. In big data models such as massively parallel computations, both sampling and sparsification are efficient and take a constant number of rounds. Most existing algorithms use line-sweeping which is sequential in nature. Also, we design two data-structures for computing the length of the curve inside a query shape: an exact data-structure for disks called hierarchical aggregated queries and an approximate data-structure for a given set of square queries. Using our modified segment tree, we achieve a near-linear time approximation algorithm.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ19-06792Y" target="_blank" >GJ19-06792Y: Strukturální vlastnosti viditelnosti terénů a Voroného diagramů nejvzdálenější barvy</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Data Science and Analytics

  • ISSN

    2364-415X

  • e-ISSN

    2364-4168

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    16

  • Strana od-do

    201-216

  • Kód UT WoS článku

    000749228200001

  • EID výsledku v databázi Scopus

    2-s2.0-85123849200