Sampling and sparsification for approximating the packedness of trajectories and detecting gatherings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00553671" target="_blank" >RIV/67985807:_____/23:00553671 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s41060-021-00301-0" target="_blank" >http://dx.doi.org/10.1007/s41060-021-00301-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s41060-021-00301-0" target="_blank" >10.1007/s41060-021-00301-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sampling and sparsification for approximating the packedness of trajectories and detecting gatherings
Popis výsledku v původním jazyce
Packedness is a measure defined for curves as the ratio of maximum curve length inside any disk divided by its radius. Sparsification allows us to reduce the number of candidate disks for maximum packedness to a polynomial amount in terms of the number of vertices of the polygonal curve. This gives an exact algorithm for computing packedness. We prove that using a fat shape, such as a square, instead of a disk gives a constant factor approximation for packedness. Further sparsification using well-separated pair decomposition improves the time complexity at the cost of losing some accuracy. By adjusting the ratio of the separation factor and the size of the query, we improve the approximation factor of the existing algorithm for packedness using square queries. Our experiments show that uniform sampling works well for finding the average packedness of trajectories with almost constant speed. The empirical results confirm that the sparsification method approximates the maximum packedness for arbitrary polygonal curves. In big data models such as massively parallel computations, both sampling and sparsification are efficient and take a constant number of rounds. Most existing algorithms use line-sweeping which is sequential in nature. Also, we design two data-structures for computing the length of the curve inside a query shape: an exact data-structure for disks called hierarchical aggregated queries and an approximate data-structure for a given set of square queries. Using our modified segment tree, we achieve a near-linear time approximation algorithm.
Název v anglickém jazyce
Sampling and sparsification for approximating the packedness of trajectories and detecting gatherings
Popis výsledku anglicky
Packedness is a measure defined for curves as the ratio of maximum curve length inside any disk divided by its radius. Sparsification allows us to reduce the number of candidate disks for maximum packedness to a polynomial amount in terms of the number of vertices of the polygonal curve. This gives an exact algorithm for computing packedness. We prove that using a fat shape, such as a square, instead of a disk gives a constant factor approximation for packedness. Further sparsification using well-separated pair decomposition improves the time complexity at the cost of losing some accuracy. By adjusting the ratio of the separation factor and the size of the query, we improve the approximation factor of the existing algorithm for packedness using square queries. Our experiments show that uniform sampling works well for finding the average packedness of trajectories with almost constant speed. The empirical results confirm that the sparsification method approximates the maximum packedness for arbitrary polygonal curves. In big data models such as massively parallel computations, both sampling and sparsification are efficient and take a constant number of rounds. Most existing algorithms use line-sweeping which is sequential in nature. Also, we design two data-structures for computing the length of the curve inside a query shape: an exact data-structure for disks called hierarchical aggregated queries and an approximate data-structure for a given set of square queries. Using our modified segment tree, we achieve a near-linear time approximation algorithm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-06792Y" target="_blank" >GJ19-06792Y: Strukturální vlastnosti viditelnosti terénů a Voroného diagramů nejvzdálenější barvy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Data Science and Analytics
ISSN
2364-415X
e-ISSN
2364-4168
Svazek periodika
15
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
201-216
Kód UT WoS článku
000749228200001
EID výsledku v databázi Scopus
2-s2.0-85123849200