Data-Driven Cz–Si Scale-Up under Conditions of Partial Similarity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00585427" target="_blank" >RIV/67985807:_____/24:00585427 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/crat.202300342" target="_blank" >https://doi.org/10.1002/crat.202300342</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/crat.202300342" target="_blank" >10.1002/crat.202300342</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data-Driven Cz–Si Scale-Up under Conditions of Partial Similarity
Popis výsledku v původním jazyce
In Cz–Si growth, the shape of the solid–liquid interface and the v/G ratio significantly impact crystal quality. This study utilizes a data-driven approach, employing multilayer perceptron (MLP) neural networks and Bayesian optimization, to investigate the scale-up process of Cz–Si under conditions of partial similarity. The focus is on exploring the influence of various process and furnace geometry parameters, as well as radiation shield material properties, on the critical measures of crystal quality. Axisymmetric CFD modeling produces 340 sets of 18D raw data, from which 14-dimensionless derived data tuples are generated for the design and training of the MLP. The best MLP obtained demonstrates the ability to accurately assess the complex nonlinear dependencies among dimensionless numbers derived from CFD data and, on the output side, interface deflection and v/G. These relationships, crucial for scale-up, are successfully generalized across a wide range of parameters.
Název v anglickém jazyce
Data-Driven Cz–Si Scale-Up under Conditions of Partial Similarity
Popis výsledku anglicky
In Cz–Si growth, the shape of the solid–liquid interface and the v/G ratio significantly impact crystal quality. This study utilizes a data-driven approach, employing multilayer perceptron (MLP) neural networks and Bayesian optimization, to investigate the scale-up process of Cz–Si under conditions of partial similarity. The focus is on exploring the influence of various process and furnace geometry parameters, as well as radiation shield material properties, on the critical measures of crystal quality. Axisymmetric CFD modeling produces 340 sets of 18D raw data, from which 14-dimensionless derived data tuples are generated for the design and training of the MLP. The best MLP obtained demonstrates the ability to accurately assess the complex nonlinear dependencies among dimensionless numbers derived from CFD data and, on the output side, interface deflection and v/G. These relationships, crucial for scale-up, are successfully generalized across a wide range of parameters.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Crystal Research and Technology
ISSN
0232-1300
e-ISSN
1521-4079
Svazek periodika
59
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
2300342
Kód UT WoS článku
001198587000001
EID výsledku v databázi Scopus
2-s2.0-85189762600