Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Free Boolean algebras over unions of two well orderings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F09%3A00333038" target="_blank" >RIV/67985840:_____/09:00333038 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Free Boolean algebras over unions of two well orderings

  • Popis výsledku v původním jazyce

    Given a partially ordered set P there exists the most general Boolean algebra (F) over cap (P) which contains P as a generating set, called the free Boolean algebra over P. We study free Boolean algebras over posets of the form P = P-0 boolean OR P-1, where P-0, P-1 are well orderings. We call them nearly ordinal algebras. Answering a question of Maurice Pouzet, we show that for every uncountable cardinal kappa there are 2(kappa) pairwise non-isomorphic nearly ordinal algebras of cardinality kappa. Topologically, free Boolean algebras over posets correspond to compact 0-dimensional distributive lattices. In this context, we classify all closed sublattices of the product (omega(1) + 1) x (omega(1) + 1), showing that there are only N-1 many types. In contrast with the last result, we show that there are 2(N)1, topological types of closed subsets of the Tikhonov plank (omega(1) + 1) x (omega + 1).

  • Název v anglickém jazyce

    Free Boolean algebras over unions of two well orderings

  • Popis výsledku anglicky

    Given a partially ordered set P there exists the most general Boolean algebra (F) over cap (P) which contains P as a generating set, called the free Boolean algebra over P. We study free Boolean algebras over posets of the form P = P-0 boolean OR P-1, where P-0, P-1 are well orderings. We call them nearly ordinal algebras. Answering a question of Maurice Pouzet, we show that for every uncountable cardinal kappa there are 2(kappa) pairwise non-isomorphic nearly ordinal algebras of cardinality kappa. Topologically, free Boolean algebras over posets correspond to compact 0-dimensional distributive lattices. In this context, we classify all closed sublattices of the product (omega(1) + 1) x (omega(1) + 1), showing that there are only N-1 many types. In contrast with the last result, we show that there are 2(N)1, topological types of closed subsets of the Tikhonov plank (omega(1) + 1) x (omega + 1).

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Topology and its Applications

  • ISSN

    0166-8641

  • e-ISSN

  • Svazek periodika

    156

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    000264904500003

  • EID výsledku v databázi Scopus