Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the Bonsall cone spectral radius and the approximate point spectrum

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00476010" target="_blank" >RIV/67985840:_____/17:00476010 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.3934/dcds.2017232" target="_blank" >http://dx.doi.org/10.3934/dcds.2017232</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3934/dcds.2017232" target="_blank" >10.3934/dcds.2017232</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the Bonsall cone spectral radius and the approximate point spectrum

  • Popis výsledku v původním jazyce

    We study the Bonsall cone spectral radius and the approximate point spectrum of (in general non-linear) positively homogeneous, bounded and supremum preserving maps, defined on a max-cone in a given normed vector lattice. We prove that the Bonsall cone spectral radius of such maps is always included in its approximate point spectrum. Moreover, the approximate point spectrum always contains a (possibly trivial) interval. Our results apply to a large class of (nonlinear) max-type operators. We also generalize a known result that the spectral radius of a positive (linear) operator on a Banach lattice is contained in the approximate point spectrum. Under additional generalized compactness type assumptions our results imply Krein-Rutman type results.

  • Název v anglickém jazyce

    On the Bonsall cone spectral radius and the approximate point spectrum

  • Popis výsledku anglicky

    We study the Bonsall cone spectral radius and the approximate point spectrum of (in general non-linear) positively homogeneous, bounded and supremum preserving maps, defined on a max-cone in a given normed vector lattice. We prove that the Bonsall cone spectral radius of such maps is always included in its approximate point spectrum. Moreover, the approximate point spectrum always contains a (possibly trivial) interval. Our results apply to a large class of (nonlinear) max-type operators. We also generalize a known result that the spectral radius of a positive (linear) operator on a Banach lattice is contained in the approximate point spectrum. Under additional generalized compactness type assumptions our results imply Krein-Rutman type results.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-00941S" target="_blank" >GA17-00941S: Topologické a geometrické vlastnosti Banachových prostorů a operátorových algeber II</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete and Continuous Dynamical Systems

  • ISSN

    1078-0947

  • e-ISSN

  • Svazek periodika

    37

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

    5337-5354

  • Kód UT WoS článku

    000408557300014

  • EID výsledku v databázi Scopus

    2-s2.0-85030532959