Definable coaisles over rings of weak global dimension at most one
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00535449" target="_blank" >RIV/67985840:_____/21:00535449 - isvavai.cz</a>
Výsledek na webu
<a href="https://dx.doi.org/10.5565/PUBLMAT6512106" target="_blank" >https://dx.doi.org/10.5565/PUBLMAT6512106</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5565/PUBLMAT6512106" target="_blank" >10.5565/PUBLMAT6512106</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Definable coaisles over rings of weak global dimension at most one
Popis výsledku v původním jazyce
In the setting of the unbounded derived category D(R) of a ring R of weak global dimension at most one we consider t-structures with a de nable coaisle. The t-structures among these which are stable (that is, the t-structures which consist of a pair of triangulated subcategories) are precisely the ones associated to a smashing localization of the derived category. In this way, our present results generalize those of [8] to the non-stable case. As in the stable case [8], we con ne for the most part to the commutative setting, and give a full classi cation of de nable coaisles in the localncase, that is, over valuation domains. It turns out that, unlike in the stable case of smashing subcategories, the de nable coaisles do not always arise from homological ring epimorphisms. We also consider a non-stable version of the Telescope Conjecture for t-structures and give a ring-theoretic characterization of the commutative rings of weak global dimension at most one for which it is satis ed.
Název v anglickém jazyce
Definable coaisles over rings of weak global dimension at most one
Popis výsledku anglicky
In the setting of the unbounded derived category D(R) of a ring R of weak global dimension at most one we consider t-structures with a de nable coaisle. The t-structures among these which are stable (that is, the t-structures which consist of a pair of triangulated subcategories) are precisely the ones associated to a smashing localization of the derived category. In this way, our present results generalize those of [8] to the non-stable case. As in the stable case [8], we con ne for the most part to the commutative setting, and give a full classi cation of de nable coaisles in the localncase, that is, over valuation domains. It turns out that, unlike in the stable case of smashing subcategories, the de nable coaisles do not always arise from homological ring epimorphisms. We also consider a non-stable version of the Telescope Conjecture for t-structures and give a ring-theoretic characterization of the commutative rings of weak global dimension at most one for which it is satis ed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Publicacions Matematiques
ISSN
0214-1493
e-ISSN
0214-1493
Svazek periodika
65
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
ES - Španělské království
Počet stran výsledku
77
Strana od-do
165-241
Kód UT WoS článku
000661536000006
EID výsledku v databázi Scopus
2-s2.0-85091070810