Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the role of pressure in the theory of MHD equations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00539554" target="_blank" >RIV/67985840:_____/21:00539554 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.nonrwa.2020.103283" target="_blank" >https://doi.org/10.1016/j.nonrwa.2020.103283</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.nonrwa.2020.103283" target="_blank" >10.1016/j.nonrwa.2020.103283</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the role of pressure in the theory of MHD equations

  • Popis výsledku v původním jazyce

    We consider the system of MHD equations in Ω×(0,T), where Ω is a domain in R3 and T>0, with the no slip boundary condition for the velocity u and the Navier-type boundary condition for the magnetic induction b. We show that an associated pressure p, as a distribution with a certain structure, can be always assigned to a weak solution (u,b). The pressure is a function with some rate of integrability if the domain Ω is “smooth”, see section 3. In section 4, we study the regularity of p in a sub-domain Ω1×(t1,t2) of Ω×(0,T), where u (or, alternatively, both u and b) satisfies Serrin's integrability conditions. Regularity criteria for weak solutions to the MHD equations in terms of [Formula presented] are studied in section 5. Finally, section 6 contains remarks on analogous results in the case of Navier's or Navier-type boundary conditions for the velocity u.

  • Název v anglickém jazyce

    On the role of pressure in the theory of MHD equations

  • Popis výsledku anglicky

    We consider the system of MHD equations in Ω×(0,T), where Ω is a domain in R3 and T>0, with the no slip boundary condition for the velocity u and the Navier-type boundary condition for the magnetic induction b. We show that an associated pressure p, as a distribution with a certain structure, can be always assigned to a weak solution (u,b). The pressure is a function with some rate of integrability if the domain Ω is “smooth”, see section 3. In section 4, we study the regularity of p in a sub-domain Ω1×(t1,t2) of Ω×(0,T), where u (or, alternatively, both u and b) satisfies Serrin's integrability conditions. Regularity criteria for weak solutions to the MHD equations in terms of [Formula presented] are studied in section 5. Finally, section 6 contains remarks on analogous results in the case of Navier's or Navier-type boundary conditions for the velocity u.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-04243S" target="_blank" >GA19-04243S: Parciální diferenciální rovnice v mechanice a termodynamice tekutin</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nonlinear Analysis: Real World Applications

  • ISSN

    1468-1218

  • e-ISSN

    1878-5719

  • Svazek periodika

    60

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    23

  • Strana od-do

    103283

  • Kód UT WoS článku

    000633361700024

  • EID výsledku v databázi Scopus

    2-s2.0-85100195256