Two remarks on graph norms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00555479" target="_blank" >RIV/67985840:_____/22:00555479 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00454-021-00280-w" target="_blank" >https://doi.org/10.1007/s00454-021-00280-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-021-00280-w" target="_blank" >10.1007/s00454-021-00280-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Two remarks on graph norms
Popis výsledku v původním jazyce
For a graph H, its homomorphism density in graphs naturally extends to the space of two-variable symmetric functions W in Lp, p≥ e(H) , denoted by t(H, W). One may then define corresponding functionals ‖W‖H:=|t(H,W)|1/e(H) and ‖W‖r(H):=t(H,|W|)1/e(H), and say that H is (semi-)norming if ‖·‖H is a (semi-)norm and that H is weakly norming if ‖·‖r(H) is a norm. We obtain two results that contribute to the theory of (weakly) norming graphs. Firstly, answering a question of Hatami, who estimated the modulus of convexity and smoothness of ‖·‖H, we prove that ‖·‖r(H) is neither uniformly convex nor uniformly smooth, provided that H is weakly norming. Secondly, we prove that every graph H without isolated vertices is (weakly) norming if and only if each component is an isomorphic copy of a (weakly) norming graph. This strong factorisation result allows us to assume connectivity of H when studying graph norms. In particular, we correct a negligence in the original statement of the aforementioned theorem by Hatami.
Název v anglickém jazyce
Two remarks on graph norms
Popis výsledku anglicky
For a graph H, its homomorphism density in graphs naturally extends to the space of two-variable symmetric functions W in Lp, p≥ e(H) , denoted by t(H, W). One may then define corresponding functionals ‖W‖H:=|t(H,W)|1/e(H) and ‖W‖r(H):=t(H,|W|)1/e(H), and say that H is (semi-)norming if ‖·‖H is a (semi-)norm and that H is weakly norming if ‖·‖r(H) is a norm. We obtain two results that contribute to the theory of (weakly) norming graphs. Firstly, answering a question of Hatami, who estimated the modulus of convexity and smoothness of ‖·‖H, we prove that ‖·‖r(H) is neither uniformly convex nor uniformly smooth, provided that H is weakly norming. Secondly, we prove that every graph H without isolated vertices is (weakly) norming if and only if each component is an isomorphic copy of a (weakly) norming graph. This strong factorisation result allows us to assume connectivity of H when studying graph norms. In particular, we correct a negligence in the original statement of the aforementioned theorem by Hatami.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-01472Y" target="_blank" >GJ18-01472Y: Limity grafů a nehomogenní náhodné grafy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete & Computational Geometry
ISSN
0179-5376
e-ISSN
1432-0444
Svazek periodika
67
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
919-929
Kód UT WoS článku
000618566600002
EID výsledku v databázi Scopus
2-s2.0-85100914327